2021年内蒙古鄂尔多斯市中考数学试卷
加入VIP免费下载

2021年内蒙古鄂尔多斯市中考数学试卷

ID:895863

大小:685 B

页数:35页

时间:2022-02-26

加入VIP免费下载
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天资源网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:403074932
资料简介
2021年内蒙古鄂尔多斯市中考数学试卷一、单项选择题(本大题共10题,每题3分,共30分)1.(3分)在实数0,π,|﹣2|,﹣1中,最小的数是(  )A.|﹣2|B.0C.﹣1D.π2.(3分)如图所示的几何体是由五个小正方体组合而成的,它的左视图是(  )A.B.C.D.3.(3分)世卫组织宣布冠状病毒最大直径约为0.00000012m,“0.00000012”用科学记数法可表示为(  )A.1.2×10﹣7B.0.12×10﹣6C.12×10﹣8D.1.2×10﹣64.(3分)下列运算正确的是(  )A.a2+a2=2a4B.a6÷a2=a3C.(a+3)(a﹣3)=a2﹣6a+9D.(﹣3a3)2=9a65.(3分)一块含30°角的直角三角板和直尺如图放置,若∠1=146°33′,则∠2的度数为(  )A.64°27′B.63°27′C.64°33′D.63°33′第35页(共35页) 6.(3分)小明收集了鄂尔多斯市某酒店2021年3月1日~3月6日每天的用水量(单位:吨),整理并绘制成如图所示的折线统计图,下列结论正确的是(  )A.平均数是B.众数是10C.中位数是8.5D.方差是7.(3分)已知:▱AOCD的顶点O(0,0),点C在x轴的正半轴上,按以下步骤作图:①以点O为圆心,适当长为半径画弧,分别交OA于点M,交OC于点N.②分别以点M,N为圆心,大于MN的长为半径画弧,两弧在∠AOC内相交于点E.③画射线OE,交AD于点F(2,3),则点A的坐标为(  )A.(,3)B.(3﹣,3)C.(﹣,3)D.(2﹣,3)8.(3分)2020年疫情防控期间,鄂尔多斯市某电信公司为了满足全体员工的需要,花1万元购买了一批口罩,随着2021年疫情的缓解,以及各种抗疫物资充足的供应,每包口罩下降10元,电信公司又花6000元购买了一批口罩,购买的数量比2020年购买的数量还多100包,设2020年每包口罩为x元,可列方程为(  )A.B.第35页(共35页) C.D.9.(3分)如图,在Rt△ABC中,∠ACB=90°,AC=8,BC=6,将边BC沿CN折叠,使点B落在AB上的点B′处,再将边AC沿CM折叠,使点A落在CB′的延长线上的点A′处,两条折痕与斜边AB分别交于点N、M,则线段A′M的长为(  )A.B.C.D.10.(3分)如图①,在矩形ABCD中,H为CD边上的一点,点M从点A出发沿折线AH﹣HC﹣CB运动到点B停止,点N从点A出发沿AB运动到点B停止,它们的运动速度都是1cm/s,若点M、N同时开始运动,设运动时间为t(s),△AMN的面积为S(cm2),已知S与t之间函数图象如图②所示,则下列结论正确的是(  )①当0<t≤6时,△AMN是等边三角形.②在运动过程中,使得△ADM为等腰三角形的点M一共有3个.③当0<t≤6时,S=.④当t=9+时,△ADH∽△ABM.⑤当9<t<9+3时,S=﹣3t+9+3.A.①③④B.①③⑤C.①②④D.③④⑤第35页(共35页) 二、填空题(本大题共6题,每题3分,共18分)11.(3分)函数的自变量x的取值范围是  .12.(3分)计算:+(2021﹣π)0+(﹣)﹣1=  .13.(3分)如图,小梅把一顶底面半径为10cm的圆锥形小丑纸帽沿一条母线剪开并展平,得到一个圆心角为120°的扇形纸片,那么扇形纸片的半径为  cm.14.(3分)将一些相同的“〇”按如图所示的规律依次摆放,观察每个“龟图”的“〇”的个数,则第30个“龟图”中有  个“〇”.15.(3分)下列说法不正确的是  (只填序号)①7﹣的整数部分为2,小数部分为﹣4.②外角为60°且边长为2的正多边形的内切圆的半径为.③把直线y=2x﹣3向左平移1个单位后得到的直线解析式为y=2x﹣2.④新定义运算:m*n=mn2﹣2n﹣1,则方程﹣1*x=0有两个不相等的实数根.16.(3分)如图,已知正方形ABCD的边长为6,点F是正方形内一点,连接CF,DF,且∠ADF=∠DCF,点E是AD边上一动点,连接EB,EF,则EB+EF长度的最小值为  .第35页(共35页) 三、解答题(本大题共8题,共72分,解答时写出必要的文字说明,演算步骤或推理过程.17.(8分)(1)解不等式组,并把解集在数轴上表示出来.(2)先化简:÷(2x﹣),再从﹣2,0,1,2中选取一个合适的x的值代入求值.18.(9分)某中学对九年级学生开展了“我最喜欢的鄂尔多斯景区”的抽样调查(每人只能选一项):A﹣动物园;B﹣七星湖;C﹣鄂尔多斯大草原;D﹣康镇;E﹣蒙古源流,根据收集的数据绘制了如图所示的两幅不完整的统计图,其中B对应的圆心角为90°,请根据图中信息解答下列问题.(1)求抽取的九年级学生共有多少人?并补全条形统计图;(2)扇形统计图中m=  ,表示D的扇形的圆心角是  度;(3)九年级准备在最喜欢A景区的5名学生中随机选择2名进行实地考察,这5名学生中有2名男生和3名女生,请用树状图或列表法求选出的2名学生都是女生的概率.第35页(共35页) 19.(8分)如图,矩形ABCD的两边AB,BC的长分别为3,8,C,D在y轴上,E是AD的中点,反比例函数y=(k≠0)的图象经过点E,与BC交于点F,且CF﹣BE=1.(1)求反比例函数的解析式;(2)在y轴上找一点P,使得S△CEP=S矩形ABCD,求此时点P的坐标.20.(8分)图①是一种手机平板支架,由托板、支撑板和底座构成,手机放置在托板上,图②是其侧面结构示意图,托板长AB=115mm,支撑板长CD=70mm,板AB固定在支撑板顶点C处,且CB=35mm,托板AB可绕点C转动,支撑板CD可绕点D转动,∠CDE=60°.(1)若∠DCB=70°时,求点A到直线DE的距离(计算结果精确到个位);(2)为了观看舒适,把(1)中∠DCB=70°调整为90°,再将CD绕点D逆时针旋转,使点B落在直线DE上即可,求CD旋转的角度.(参考数据:sin50°≈0.8,cos50°≈0.6,tan50°≈1.2,sin26.6°≈0.4,cos26.6°≈0.9,tan26.6°≈0.5,≈1.7)第35页(共35页) 21.(9分)如图,在△ABC中,AB=AC,以AB为直径的⊙O交AC于点D,BC于点E,直线EF⊥AC于点F,交AB的延长线于点H.(1)求证:HF是⊙O的切线;(2)当EB=6,cos∠ABE=时,求tanH的值.22.(8分)鄂尔多斯市某宾馆共有50个房间供游客居住,每间房价不低于200元且不超过320元、如果游客居住房间,宾馆需对每个房间每天支出20元的各种费用.已知每个房间定价x(元)和游客居住房间数y(间)符合一次函数关系,如图是y关于x的函数图象.(1)求y与x之间的函数解析式,并写出自变量x的取值范围;(2)当房价定为多少元时,宾馆利润最大?最大利润是多少元?23.(11分)如图,抛物线y=x2+2x﹣8与x轴交于A,B两点(点A在点B左侧),与y轴交于点C.(1)求A,B,C三点的坐标;(2)连接AC,直线x=m(﹣4<m<0)与该抛物线交于点E,与AC交于点D,连接OD.当OD⊥AC时,求线段DE的长;(3)点M在y轴上,点N在直线AC上,点P为抛物线对称轴上一点,是否存在点M,使得以C、M、N、P为顶点的四边形是菱形?若存在,请直接写出点M第35页(共35页) 的坐标;若不存在,请说明理由.24.(11分)旋转是一种重要的图形变换,当图形中有一组邻边相等时往往可以通过旋转解决问题.(1)尝试解决:如图①,在等腰Rt△ABC中,∠BAC=90°,AB=AC,点M是BC上的一点,BM=1cm,CM=2cm,将△ABM绕点A旋转后得到△ACN,连接MN,则AM=  cm.(2)类比探究:如图②,在“筝形”四边形ABCD中,AB=AD=a,CB=CD,AB⊥BC于点B,AD⊥CD于点D,点P、Q分别是AB、AD上的点,且∠PCB+∠QCD=∠PCQ,求△APQ的周长.(结果用a表示)(3)拓展应用:如图③,已知四边形ABCD,AD=CD,∠ADC=60°,∠ABC=75°,第35页(共35页) AB=2,BC=2,求四边形ABCD的面积.第35页(共35页) 2021年内蒙古鄂尔多斯市中考数学试卷参考答案与试题解析一、单项选择题(本大题共10题,每题3分,共30分)1.(3分)在实数0,π,|﹣2|,﹣1中,最小的数是(  )A.|﹣2|B.0C.﹣1D.π【解答】解:∵|﹣2|=2,∴﹣1<0<|﹣2|<π,∴最小的数是﹣1,故选:C.2.(3分)如图所示的几何体是由五个小正方体组合而成的,它的左视图是(  )A.B.C.D.【解答】解:此几何体的左视图有两列,左边一列有2个小正方形,右边一列有1个小正方形,故选:B.3.(3分)世卫组织宣布冠状病毒最大直径约为0.00000012m,“0.00000012”用科学记数法可表示为(  )A.1.2×10﹣7B.0.12×10﹣6C.12×10﹣8D.1.2×10﹣6【解答】解:0.00000012=1.2×10﹣7.故选:A.4.(3分)下列运算正确的是(  )第35页(共35页) A.a2+a2=2a4B.a6÷a2=a3C.(a+3)(a﹣3)=a2﹣6a+9D.(﹣3a3)2=9a6【解答】解:A、a2+a2=2a2,原计算错误,故此选项不符合题意;B、a6÷a2=a4,原计算错误,故此选项不符合题意;C、(a+3)(a﹣3)=a2﹣9,原计算错误,故此选项不符合题意;D、(﹣3a3)2=9a6,原计算正确,故此选项符合题意;故选:D.5.(3分)一块含30°角的直角三角板和直尺如图放置,若∠1=146°33′,则∠2的度数为(  )A.64°27′B.63°27′C.64°33′D.63°33′【解答】解:如图,∵∠1+∠4=180°,∠1=146°33′,∴∠4=33°27′,∵∠3=∠4+∠A,∠A=30°,∴∠3=63°27′,∵直尺的对边互相平行,∴∠2=∠3=63°27′,故选:B.6.(3分)小明收集了鄂尔多斯市某酒店2021年3月1日~3月6日每天的用水量(单位:吨),整理并绘制成如图所示的折线统计图,下列结论正确的是(  )第35页(共35页) A.平均数是B.众数是10C.中位数是8.5D.方差是【解答】解:由折线图知:2021年3月1日~3月6日的用水量(单位:吨)依次是4,2,7,10,9,4,从小到大重新排列为:2,4,4,7,9,10,∴平均数是(4+2+7+10+9+4)=6,中位数是(4+7)=5.5,由4出现了2次,故其众数为4.方差是S2=[2×(4﹣6)2+(2﹣6)2+(7﹣6)2+(10﹣6)2+(9﹣6)2]=.综上只有选项D正确.故选:D.7.(3分)已知:▱AOCD的顶点O(0,0),点C在x轴的正半轴上,按以下步骤作图:①以点O为圆心,适当长为半径画弧,分别交OA于点M,交OC于点N.②分别以点M,N为圆心,大于MN的长为半径画弧,两弧在∠AOC内相交于点E.③画射线OE,交AD于点F(2,3),则点A的坐标为(  )第35页(共35页) A.(,3)B.(3﹣,3)C.(﹣,3)D.(2﹣,3)【解答】解:由作法得OE平分∠AOC,则∠AOF=∠COF,∵四边形AOCD为平行四边形,∴AD∥OC,∴∠AFO=∠COF,∴∠AOF=∠AFO,∴OA=AF,设AF交y轴于M,如图,∵F(2,3),∴MF=2,OM=3,设A(t,3),∴AM=﹣t,AO=AF=﹣t+2,在Rt△OAM中,t2+32=(﹣t+2)2,解得t=﹣,∴A(﹣,3).故选:A.第35页(共35页) 8.(3分)2020年疫情防控期间,鄂尔多斯市某电信公司为了满足全体员工的需要,花1万元购买了一批口罩,随着2021年疫情的缓解,以及各种抗疫物资充足的供应,每包口罩下降10元,电信公司又花6000元购买了一批口罩,购买的数量比2020年购买的数量还多100包,设2020年每包口罩为x元,可列方程为(  )A.B.C.D.【解答】解:设2020年每包口罩为x元,根据题意可得:,故选:C.9.(3分)如图,在Rt△ABC中,∠ACB=90°,AC=8,BC=6,将边BC沿CN折叠,使点B落在AB上的点B′处,再将边AC沿CM折叠,使点A落在CB′的延长线上的点A′处,两条折痕与斜边AB分别交于点N、M,则线段A′M的长为(  )A.B.C.D.【解答】解:由两次翻折知:CB=CB'=6,AC=A'C=8,∠A'=∠A,∠B=∠BB'C,∴A'B'=2,∵∠A+∠B=90°,∴∠A'+∠BB'C=90°,∴∠A+∠A'B'M=90°,∴A'M⊥AB,∵∠ACB=90°,AC=8,BC=6,由勾股定理得:AB=,∴cosA'=cosA=,第35页(共35页) ∴,∴A'M=,故选:B.10.(3分)如图①,在矩形ABCD中,H为CD边上的一点,点M从点A出发沿折线AH﹣HC﹣CB运动到点B停止,点N从点A出发沿AB运动到点B停止,它们的运动速度都是1cm/s,若点M、N同时开始运动,设运动时间为t(s),△AMN的面积为S(cm2),已知S与t之间函数图象如图②所示,则下列结论正确的是(  )①当0<t≤6时,△AMN是等边三角形.②在运动过程中,使得△ADM为等腰三角形的点M一共有3个.③当0<t≤6时,S=.④当t=9+时,△ADH∽△ABM.⑤当9<t<9+3时,S=﹣3t+9+3.A.①③④B.①③⑤C.①②④D.③④⑤【解答】解:由图②可知:点M、N两点经过6秒时,S最大,此时点M在点H处,点N在点B处并停止不动,如图,①∵点M、N两点的运动速度为1cm/s,第35页(共35页) ∴AH=AB=6cm,∵四边形ABCD是矩形,∴CD=AB=6cm.∵当t=6s时,S=9cm2,∴×AB×BC=9.∴BC=3cm.∵当6≤t≤9时,S=且保持不变,∴点N在B处不动,点M在线段HC上运动,运动时间为(9﹣6)秒,∴HC=3cm,即点H为CD的中点.∴BH=cm.∴AB=AH=BH=6cm,∴△ABM为等边三角形.∴∠HAB=60°.∵点M、N同时开始运动,速度均为1cm/s,∴AM=AN,∴当0<t≤6时,△AMN为等边三角形.故①正确;②如图,当点M在AD的垂直平分线上时,△ADM为等腰三角形:此时有两个符合条件的点;当AD=AM时,△ADM为等腰三角形,如图:第35页(共35页) 当DA=DM时,△ADM为等腰三角形,如图:综上所述,在运动过程中,使得△ADM为等腰三角形的点M一共有4个.∴②不正确;③过点M作ME⊥AB于点E,如图,由题意:AM=AN=t,由①知:∠HAB=60°.在Rt△AME中,∵sin∠MAE=,∴ME=AM•sin60°=tcm,∴S=AN×ME=cm2.∴③正确;④当t=9+时,CM=cm,如图,第35页(共35页) 由①知:BC=3cm,∴MB=BC﹣CM=2cm.∵AB=6cm,∴tan∠MAB=,∴∠MAB=30°.∵∠HAB=60°,∴∠DAH=90°﹣60°=30°.∴∠DAH=∠BAM.∵∠D=∠B=90°,∴△ADH∽△ABM.∴④正确;⑤当9<t<9+3时,此时点M在边BC上,如图,此时MB=9+3﹣t,∴S=×AB×MB=×6×(9+3﹣t)=27+9﹣3t.∴⑤不正确;综上,结论正确的有:①③④.故选:A.二、填空题(本大题共6题,每题3分,共18分)第35页(共35页) 11.(3分)函数的自变量x的取值范围是 x≤2 .【解答】解:根据题意得:4﹣2x≥0,解得x≤2.12.(3分)计算:+(2021﹣π)0+(﹣)﹣1= ﹣4 .【解答】解:原式=﹣2+1﹣3=﹣4.故答案为:﹣4.13.(3分)如图,小梅把一顶底面半径为10cm的圆锥形小丑纸帽沿一条母线剪开并展平,得到一个圆心角为120°的扇形纸片,那么扇形纸片的半径为 30 cm.【解答】解:设扇形纸片的半径为xcm,由圆锥底面圆的周长是展开扇形的弧长可得:2π×10=,解得x=30,故答案为:30.14.(3分)将一些相同的“〇”按如图所示的规律依次摆放,观察每个“龟图”的“〇”的个数,则第30个“龟图”中有 875 个“〇”.【解答】解:∵第1个图形中小圆的个数为1+4=5;第2个图形中小圆的个数为1+5+1=7;第3个图形中小圆的个数为1+6+4=11;第4个图形中小圆的个数为1+7+9=17;第35页(共35页) …∴第n个图形中小圆的个数为1+(n+3)+(n﹣1)2.∴第30个“龟图”中的“〇”的个数为1+(30+3)+(30﹣1)2=1+33+841=875.故答案为:875.15.(3分)下列说法不正确的是 ①③④ (只填序号)①7﹣的整数部分为2,小数部分为﹣4.②外角为60°且边长为2的正多边形的内切圆的半径为.③把直线y=2x﹣3向左平移1个单位后得到的直线解析式为y=2x﹣2.④新定义运算:m*n=mn2﹣2n﹣1,则方程﹣1*x=0有两个不相等的实数根.【解答】解:①)∵4<<5,∴2<7﹣<3,∴7﹣的整数部分是2,小数部分是小数部分为5﹣,故符合题意;②解:设正多边形是n边形.由题意:=60°,∴n=6,∴这个正多边形的内切圆的半径为;故不符合题意;③把直线y=2x﹣3向左平移1个单位后得到的直线解析式为y=2x﹣1,故符合题意;④根据题意得﹣x2﹣2x﹣1=0,∵Δ=(﹣2)2﹣4=0,∴方程有两个相等的实数根,故符合题意.故答案为:①③④.16.(3分)如图,已知正方形ABCD的边长为6,点F是正方形内一点,连接CF,DF,且∠ADF=∠DCF,点E是AD边上一动点,连接EB,EF,则EB+EF长度的最小值为 3﹣3 .第35页(共35页) 【解答】解:∵四边形ABCD是正方形,∴∠ADC=90°,∴∠ADF+∠FDC=90°,∵∠ADF=∠FCD,∴∠FDC+∠FDC=90°,∴∠DFC=90°,∴点F在以DC为直径的半圆上移动,如图,设DC的中点为O,作正方形ABCD关于直线AD对称的正方形AB'C'D,则点B的对应点是B',连接B'O交AD于E,交半圆O于F,则线段B'F的长即为BE+EF的长度最小值,OF=3,∵∠C'=90°,B'C'=C'D=CD=6,∴OC'=9,∴B'O===3,∴EP=3﹣3,∴FD+FE的长度最小值为3﹣3,故答案为:3﹣3.三、解答题(本大题共8题,共72分,解答时写出必要的文字说明,演算步骤或推理过程.第35页(共35页) 17.(8分)(1)解不等式组,并把解集在数轴上表示出来.(2)先化简:÷(2x﹣),再从﹣2,0,1,2中选取一个合适的x的值代入求值.【解答】解:(1)由①得,4x﹣3x+6≥4,x≥﹣2;由②得,2(x﹣1)>5(x+1)﹣10,2x﹣2>5x+5﹣10,﹣3x>﹣3,x<1,所以不等式组的解集是:﹣2≤x<1,它们的解集在数轴上表示如下:(2)÷(2x﹣)===﹣,∵x≠0,2,﹣2,∴当x=1时,原式=﹣.18.(9分)某中学对九年级学生开展了“我最喜欢的鄂尔多斯景区”的抽样调查(每人只能选一项):A﹣动物园;B﹣七星湖;C﹣鄂尔多斯大草原;D﹣康镇;E﹣第35页(共35页) 蒙古源流,根据收集的数据绘制了如图所示的两幅不完整的统计图,其中B对应的圆心角为90°,请根据图中信息解答下列问题.(1)求抽取的九年级学生共有多少人?并补全条形统计图;(2)扇形统计图中m= 10 ,表示D的扇形的圆心角是 36 度;(3)九年级准备在最喜欢A景区的5名学生中随机选择2名进行实地考察,这5名学生中有2名男生和3名女生,请用树状图或列表法求选出的2名学生都是女生的概率.【解答】解:(1)∵B对应的圆心角为90°,B的人数是50,∴此次抽取的九年级学生共50÷=200(人),C对应的人数是:200﹣60﹣50﹣20﹣40=30,补全条形统计图如图1所示:(2)D所占的百分比为×100%=10%,∴m=10,表示D的扇形的圆心角是360°×=36°;故答案为:10,36°;(3)画树状图为:第35页(共35页) 共有20种等可能的结果数,其中选出的2名学生都是女生的结果数为6,∴选出的2名学生都是女生的概率为=.19.(8分)如图,矩形ABCD的两边AB,BC的长分别为3,8,C,D在y轴上,E是AD的中点,反比例函数y=(k≠0)的图象经过点E,与BC交于点F,且CF﹣BE=1.(1)求反比例函数的解析式;(2)在y轴上找一点P,使得S△CEP=S矩形ABCD,求此时点P的坐标.【解答】解:(1)∵E是AD的中点,∴AE=,第35页(共35页) 在Rt△ABE中,由勾股定理得:BE=,∵CF﹣BE=1,∴CF=6,∴F的横坐标为﹣6,设F(﹣6,m),则E(﹣4,m+3),∵E,F都在反比例函数图象上,∴﹣6m=﹣4(m+3),解得m=6,∴F(﹣6,6),∴k=﹣36,∴反比例函数y=﹣.(2)∵S△CEP=S矩形ABCD,∴,∴CP=8,∴P(0,14)或(0,﹣2).20.(8分)图①是一种手机平板支架,由托板、支撑板和底座构成,手机放置在托板上,图②是其侧面结构示意图,托板长AB=115mm,支撑板长CD=70mm,板AB固定在支撑板顶点C处,且CB=35mm,托板AB可绕点C转动,支撑板CD可绕点D转动,∠CDE=60°.(1)若∠DCB=70°时,求点A到直线DE的距离(计算结果精确到个位);(2)为了观看舒适,把(1)中∠DCB=70°调整为90°,再将CD绕点D逆时针旋转,使点B落在直线DE上即可,求CD旋转的角度.(参考数据:sin50°≈0.8,cos50°≈0.6,tan50°≈1.2,sin26.6°≈0.4,cos26.6°≈0.9,tan26.6°≈0.5,≈1.7)第35页(共35页) 【解答】解:(1)过点C作CG∥DE,过点A作AH⊥CG于H,过点C作CF⊥DE于点F,则点A到直线DE的距离为:AH+CF.在Rt△CDF中,∵sin∠CDE=,∴CF=CD•sin60°=70×=35≈59.5(mm).∵∠DCB=70°,∴∠ACD=180°﹣∠DCB=110°,∵CG∥DE,∴∠GCD=∠CDE=60°.∴∠ACH=∠ACD﹣∠DCG=50°.在Rt△ACH中,∵sin∠ACH=,∴AH=AC•sin∠ACH=(115﹣35)×sin50°≈80×0.8=64(mm).∴点A到直线DE的距离为AH+CF=59.5+64=123.5≈124(mm).第35页(共35页) (2)如下图所示,虚线部分为旋转后的位置,B的对应点为B′,C的对应点为C′,则B′C′=BC=35mm,DC′=DC=70mm.在Rt△B′C′D中,∵tan∠B′DC′==0.5,tan26.6°≈0.5,∴∠B′DC′=26.6°.∴CD旋转的角度为∠CDC′=∠CDE﹣∠B′DC′=60°﹣26.6°=33.4°.21.(9分)如图,在△ABC中,AB=AC,以AB为直径的⊙O交AC于点D,BC于点E,直线EF⊥AC于点F,交AB的延长线于点H.(1)求证:HF是⊙O的切线;(2)当EB=6,cos∠ABE=时,求tanH的值.【解答】(1)证明:如图,连接OE,∵AB为⊙O的直径,第35页(共35页) ∴∠AEB=90°,∵AB=AC,∴BE=CE,∵OB=OE,∴OE∥AC,又∵HF⊥AC,∴OE⊥HF,∴HF是⊙O的切线.(2)解:过点E作EG⊥AH于G,∴∠EGB=90°,EB=6,∵cos∠ABE=,∴BG=2,EG=4,∵∠H+∠HEG=90°,∠GEO+∠HEG=90°,∴∠H=∠GEO,在Rt△BEA中,cos∠ABE=,EB=6,∴AB=18,∴OB=AB=9,∴GO=OB﹣BG=7,∴tanH=tan∠GEO==.22.(8分)鄂尔多斯市某宾馆共有50个房间供游客居住,每间房价不低于200元且不超过320元、如果游客居住房间,宾馆需对每个房间每天支出20元的各种费用.已知每个房间定价x(元)和游客居住房间数y(间)符合一次函数关系,如图是y关于x的函数图象.(1)求y与x之间的函数解析式,并写出自变量x的取值范围;(2)当房价定为多少元时,宾馆利润最大?最大利润是多少元?第35页(共35页) 【解答】解:(1)由题意,设y关于x的函数解析式为y=kx+b,把(280,40,),(290,39)代入得:,解得:,∴y与x之间的函数解析式为y=﹣x+68(200≤x≤320);(2)设宾馆的利润为w元,则w=(x﹣20)y=(x﹣20)(﹣x+68)=﹣x2+70x﹣1360=﹣(x﹣350)2+10890,∵﹣<0,∴当x<350时,w随x的增大而增大,∵200≤x≤320,∴当x=320时,w取得最大值,最大值为10800元,答:当每间房价定价为320元时,宾馆每天所获利润最大,最大利润是10800元.23.(11分)如图,抛物线y=x2+2x﹣8与x轴交于A,B两点(点A在点B左侧),与y轴交于点C.(1)求A,B,C三点的坐标;(2)连接AC,直线x=m(﹣4<m<0)与该抛物线交于点E,与AC交于点D,连接OD.当OD⊥AC时,求线段DE的长;(3)点M在y轴上,点N在直线AC上,点P为抛物线对称轴上一点,是否存在点M,使得以C、M、N、P为顶点的四边形是菱形?若存在,请直接写出点M的坐标;若不存在,请说明理由.第35页(共35页) 【解答】解:(1)在y=x2+2x﹣8中,令y=0,得x2+2x﹣8=0,解得:x1=﹣4,x2=2,∴A(﹣4,0),B(2,0),令x=0,得y=﹣8,∴C(0,﹣8);(2)设直线AC的解析式为y=kx+b,∵A(﹣4,0),C(0,﹣8),∴,解得:,∴直线AC的解析式为y=﹣2x﹣8,∵直线x=m(﹣4<m<0)与该抛物线交于点E,与AC交于点D,∴E(m,m2+2m﹣8),D(m,﹣2m﹣8),∴DE=﹣2m﹣8﹣(m2+2m﹣8)=﹣m2﹣4m,设DE交x轴于点F,则F(m,0),∴OF=﹣m,∴AF=m﹣(﹣4)=m+4,DF=2m+8,∵OD⊥AC,EF⊥OA,∴∠ODA=∠OFD=∠DFA=∠AOC=90°,∴∠DOF+∠COD=∠OCD+∠COD=90°,第35页(共35页) ∴∠DOF=∠OCD,∴△ACO∽△DOF,∴=,∴OC•DF=OA•OF,∴8(2m+8)=4(﹣m),解得:m=﹣,∴DE=﹣m2﹣4m=﹣(﹣)2﹣4×(﹣)=;(3)存在,如图2,∵y=x2+2x﹣8=(x+1)2﹣9,抛物线对称轴为直线x=﹣1,∵以C、M、N、P为顶点的四边形是菱形,∴分三种情况:CM对角线或CN为对角线或CP为对角线,①当CP为对角线时,CM∥PN,CM=PN=CN,∴N点为直线AC与抛物线对称轴的交点,即N(﹣1,﹣6),CN==,∴CM=PN=,∴M1(0,﹣8+),M2(0,﹣8﹣);②当CN为对角线时,CM∥PN,CM=PN=CP,设CM=a,则M(0,﹣8+a),P(﹣1,﹣6﹣a),∴(﹣1﹣0)2+(﹣6﹣a+8)2=a2,解得:a=,∴M3(0,﹣),③当CM对角线时,PN与CM互相垂直平分,设P(﹣1,b),则N(1,b),M(0,2b+8),∵N(1,b)在直线y=﹣2x﹣8上,∴b=﹣2×1﹣8=﹣10,∴M4(0,﹣12),第35页(共35页) 综上所述,点M的坐标为:M1(0,﹣8+),M2(0,﹣8﹣),M3(0,﹣),M4(0,﹣12).24.(11分)旋转是一种重要的图形变换,当图形中有一组邻边相等时往往可以通过旋转解决问题.第35页(共35页) (1)尝试解决:如图①,在等腰Rt△ABC中,∠BAC=90°,AB=AC,点M是BC上的一点,BM=1cm,CM=2cm,将△ABM绕点A旋转后得到△ACN,连接MN,则AM=  cm.(2)类比探究:如图②,在“筝形”四边形ABCD中,AB=AD=a,CB=CD,AB⊥BC于点B,AD⊥CD于点D,点P、Q分别是AB、AD上的点,且∠PCB+∠QCD=∠PCQ,求△APQ的周长.(结果用a表示)(3)拓展应用:如图③,已知四边形ABCD,AD=CD,∠ADC=60°,∠ABC=75°,AB=2,BC=2,求四边形ABCD的面积.【解答】解:(1)如图①,∵∠BAC=90°,AB=AC,∴∠B=∠ACB=45°,由旋转得:CN=BM=1,∠ACN=∠B=45°,∠MAN=∠BAC=90°,AM=AN,∴∠MCN=∠ACB+∠ACN=45°+45°=90°,△AMN是等腰直角三角形,∵CM=2,第35页(共35页) ∴MN==,∴AM=MN=(cm);故答案为:;(2)如图②,延长AB到E,使BE=DQ,连接CE,∵AB⊥BC,AD⊥CD,∴∠ADC=∠ABC=90°,∴∠CBE=∠CDQ=90°,在△CDQ和△CBE中,,∴△CDQ≌△CBE(SAS),∴∠DCQ=∠BCE,CQ=CE,∵∠PCB+∠QCD=∠PCQ,∴∠PCB+∠BCE=∠PCQ=∠PCE,在△QCP和△ECP中,,∴△QCP≌△ECP(SAS),∴PQ=PE,∴△APQ的周长=AQ+PQ+AP=AQ+PE+AP=AQ+BE+PB+AP=AQ+DQ+AB=2AB=2a;(3)如图③,连接BD,由于AD=CD,所以可将△BCD绕点D顺时针方向旋转60°,得到△DAB′,第35页(共35页) 连接BB′,延长BA,作B′E⊥BA于E,由旋转得:△BCD≌△B′AD,∴BD=B'D,∠BDB'=60°,∠CBD=∠AB'D,∴S四边形ABCD=S四边形BDB′A,△BDB'是等边三角形,∵∠ABC=75°,∠ADC=60°,∴∠BAB′=∠BDB'+∠AB'D+∠ABD=135°,∴∠B′AE=45°,∵B′A=BC=2,∴B′E=AE=,∴BE=AB+AE=2+=3,∴BB′==2,设等边三角形的高为h,则勾股定理得:h==,∴S四边形ABCD=S四边形BDB′A=S△BDB′﹣S△ABB′=×2×﹣××=5﹣2.声明:试题解析著作权属菁优网所有,未经书面同意,不得复制发布日期:2021/8/413:58:12;用户:柯瑞;邮箱:ainixiaoke00@163.com;学号:500557第35页(共35页)

10000+的老师在这里下载备课资料