2021年辽宁省盘锦市中考数学试卷
加入VIP免费下载

2021年辽宁省盘锦市中考数学试卷

ID:895872

大小:625 B

页数:20页

时间:2022-02-26

加入VIP免费下载
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天资源网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:403074932
资料简介
2021年辽宁省盘锦市中考数学试卷一、选择题(本题包括10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.3的相反数是(  )A.﹣3B.3C.D.﹣2.如图中的三视图对应的三棱柱是(  )A.B.C.D.3.下列运算正确的是(  )A.a2+a3=a5B.m﹣2=﹣m2C.(2m)2=2m2D.ab2÷ab=b4.空气是由多种气体混合组成的,为了直观地介绍空气各成分的百分比,最适合使用的统计图是(  )A.条形图B.扇形图C.折线图D.直方图5.下列命题正确的是(  )A.同位角相等B.相等的圆心角所对的弧相等C.对角线相等的四边形是矩形D.直角三角形斜边上的中线等于斜边的一半6.下列调查中,适宜采用抽样调查的是(  )A.调查某班学生的身高情况B.调查亚运会100m游泳决赛运动员兴奋剂使用情况C.调查某批汽车的抗撞击能力D.调查一架“歼10”隐形战斗机各零部件的质量7.如图,已知直线AB和AB上一点C,过点C作直线AB的垂线,步骤如下:第一步:以点C为圆心,以任意长为半径作弧,交直线AB于点D和点E;第二步:分别以点D和点E为圆心,以a为半径作弧,两弧交于点F;第三步:作直线CF,直线CF即为所求.下列关于a的说法正确的是(  )A.a≥DE的长B.a≤DE的长C.a>DE的长D.a<DE的长8.“今有井径五尺,不知其深,立五尺木于井上,从木末望水岸,入径四寸,问井深几何?”这是我国古代数学著作《九章算术》中的“井深几何”问题,它的题意可以由示意图获得,设并深为x尺,所列方程正确的是(  )第20页(共20页) A.=B.=C.=D.=9.甲、乙、丙、丁四人10次随堂测验的成绩如图所示,从图中可以看出这10次测验平均成绩较高且较稳定的是(  )A.甲B.乙C.丙D.丁10.如图,四边形ABCD是菱形,BC=2,∠ABC=60°,对角线AC与BD相交于点O,线段BD沿射线AD方向平移,平移后的线段记为PQ,射线PQ与射线AC交于点M,连接PC,设OM长为x,△PMC的面积为y,下列图象能正确反映出y与x的函数关系的是(  )A.B.C.D.二、填空题(本题包括8小题,每小题3分,共24分)11.建党100周年期间,我市人社系统不断提升服务能力和水平,让我市约1300000参保人员获得更高质量的社会保障福祉,数据1300000用科学记数法表示为  .12.分解因式:2x2﹣2=  .13.计算:|﹣2|+=  .14.从不等式组的所有整数解中任取一个数,是偶数的概率是  .15.如图,⊙A,⊙B,⊙C两两不相交,且半径都等于2,则图中三个扇形(即阴影部分)的面积之和为  .(结果保留π)16.如图,在平面直角坐标系xOy中,点A在x轴负半轴上,点B在y轴正半轴上,⊙D经过A,B,O,C四点,∠ACO=120°,AB=4,则圆心点D的坐标是  .17.如图,四边形ABCD是平行四边形,以点B为圆心,BC的长为半径作弧交AD于点E,分别以点C,E为圆心、大于CE的长为半径作弧,两弧交于点P,作射线BP交AD的延长线于点F,∠CBE=60°,BC=6,则BF的长为  .18.如图,四边形ABCD为矩形,AB=2,AD=2,点P为边AB上一点,以DP为折痕将△DAP翻折,点A的对应点为点A′,连接AA′,AA′交PD于点M,点Q为线段BC上一点,连接AQ,MQ,则AQ+MQ的最小值是  .三、解答题(第19题8分,第20题14分,共22分)19.(8分)先化简,再求值:÷﹣,其中x=+4.第20页(共20页) 20.(14分)某校七、八年级各有500名学生,为了解该校七、八年级学生对党史知识的掌握情况,从七、八年级学生中各随机抽取15人进行党史知识测试,统计这部分学生的测试成绩(成绩均为整数,满分10分,8分及8分以上为优秀),相关数据统计整理如下:七年级抽取学生的成绩:6,6,6,8,8,8,8,8,8,8,9,9,9,9,10.七、八年级抽取学生的测试成绩统计表年级七年级八年级平均数88众数a7中位数8b优秀率80%60%(1)填空:a=  ,b=  .(2)根据以上数据,你认为该校七、八年级中,哪个年级的学生党史知识掌握得较好?请说明理由(写出一条即可).(3)请估计七、八年级学生对党史知识掌握能够达到优秀的总人数;(4)现从七、八年级获得10分的4名学生中随机抽取2人参加市党史知识竞赛,请用列表法或画树状图法,求出被选中的2人恰好是七、八年级各1人的概率.四、解答题(本题10分)21.(10分)如图,直线y=x﹣交x轴于点M,四边形OMAE是矩形,S矩形OMAE=4,反比例函数y=(x>0)的图象经过点A,EA的延长线交直线y=x﹣于点D.(1)求反比例函数的解析式;(2)若点B在x轴上,且AB=AD,求点B的坐标.五、解答题(第22题10分,第23题12分,共22分)22.(10分)如图,小华遥控无人机从A处飞行到对面大厦MN的顶端M,无人机飞行方向与水平方向的夹角为37°,小华在A点测得大厦底部N的俯角为31°,两楼之间一棵树EF的顶点E恰好在视线AN上,已知树的高度为6m,且=,楼AB,MN,树EF均垂直于地面,问:无人机飞行的距离AM约是多少米?(结果保留整数.参考数据:cos31°≈0.86,tan31°≈0.60,cos37°≈0.80,tan37°≈0.75)23.(12分)如图,△ABC内接于⊙O,AB是⊙O的直径,过⊙O外一点D作DG∥BC,DG交线段AC于点G,交AB于点E,交⊙O于点F,连接DB,CF,∠A=∠D.(1)求证:BD与⊙O相切;(2)若AE=OE,CF平分∠ACB,BD=12,求DE的长.六、解答题(本题14分)第20页(共20页) 24.(14分)某工厂生产并销售A,B两种型号车床共14台,生产并销售1台A型车床可以获利10万元;如果生产并销售不超过4台B型车床,则每台B型车床可以获利17万元,如果超出4台B型车床,则每超出1台,每台B型车床获利将均减少1万元.设生产并销售B型车床x台.(1)当x>4时,完成以下两个问题:①请补全下面的表格:A型B型车床数量/台  x每台车床获利/万元10  ②若生产并销售B型车床比生产并销售A型车床获得的利润多70万元,问:生产并销售B型车床多少台?(2)当0<x≤14时,设生产并销售A,B两种型号车床获得的总利润为W万元,如何分配生产并销售A,B两种车床的数量,使获得的总利润W最大?并求出最大利润.七、解答题(本题14分)25.(14分)如图,四边形ABCD是正方形,△ECF为等腰直角三角形,∠ECF=90°,点E在BC上,点F在CD上,N为EF的中点,连接NA,以NA,NF为邻边作▱ANFG,连接DG,DN,将Rt△ECF绕点C顺时针旋转,旋转角为α(0°≤α≤360°).(1)如图1,当α=0°时,DG与DN的关系为  .(2)如图2,当0°<α<45°时,(1)中的结论是否成立?若成立,请写出证明过程;若不成立,请说明理由.(3)在Rt△ECF的旋转过程中,当▱ANFG的顶点G落在正方形ABCD的边上,且AB=12,EC=5时,连接GN,请直接写出GN的长.八、解答题(本题14分)26.(14分)如图,抛物线y=﹣x2+2x+6与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,直线y=x﹣2与y轴交于点D,与x轴交于点E,与直线BC交于点F.(1)点F的坐标为  ;(2)如图1,点P为第一象限抛物线上的一点,PF的延长线交OB于点Q,PM⊥BC于点M,QN⊥BC于点N,若=,求点P的坐标;(3)如图2,点S为第一象限抛物线上的一点,且点S在射线DE上方,动点G从点E出发,沿射线DE方向以每秒4个单位长度的速度运动,当SE=SG,且tan∠SEG=时,求点G的运动时间t.第20页(共20页) 2021年辽宁省盘锦市中考数学试卷参考答案与试题解析一、选择题(本题包括10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.3的相反数是(  )A.﹣3B.3C.D.﹣【解答】解:3的相反数是﹣3.故选:A.2.如图中的三视图对应的三棱柱是(  )A.B.C.D.【解答】解:由俯视图得到正三棱柱两个底面在竖直方向,由主视图得到有一条侧棱在正前方,于是可判定B选项正确.故选:B.3.下列运算正确的是(  )A.a2+a3=a5B.m﹣2=﹣m2C.(2m)2=2m2D.ab2÷ab=b【解答】解:A、a2和a3不是同类项,不能合并,故A不符合题意;B、m﹣2=,故B不符合题意;C、(2m)2=4m2,故C不符合题意;D、ab2÷ab=b,故D符合题意.故选:D.4.空气是由多种气体混合组成的,为了直观地介绍空气各成分的百分比,最适合使用的统计图是(  )A.条形图B.扇形图C.折线图D.直方图【解答】解:条形统计图能清楚地表示出每个项目中的具体数目,易于比较数据之间的差别,故A选项不符合题意;扇形统计图中用扇形的面积表示部分在总体中所占的百分比,易于显示每组数据相对于总数的大小,故B选项符合题意;折线统计图能清楚地反映事物的变化情况,显示数据变化趋势,故C选项不符合题意;直方图在数量表示上比较确切,但不够直观、形象,不利于分析数据分布的总体态势,故D选项不符合题意.故选:B.5.下列命题正确的是(  )A.同位角相等B.相等的圆心角所对的弧相等C.对角线相等的四边形是矩形D.直角三角形斜边上的中线等于斜边的一半【解答】解:A、两直线平行,同位角相等,故原命题错误,不符合题意;B、同圆或等圆中,相等的圆心角所对的弧相等,故原命题错误,不符合题意;C、对角线相等的平行四边形是矩形,故原命题错误,不符合题意;D、直角三角形斜边上的中线等于斜边的一半,正确,符合题意;故选:D.第20页(共20页) 6.下列调查中,适宜采用抽样调查的是(  )A.调查某班学生的身高情况B.调查亚运会100m游泳决赛运动员兴奋剂的使用情况C.调查某批汽车的抗撞击能力D.调查一架“歼10”隐形战斗机各零部件的质量【解答】解:A.调查某班学生的身高情况,适合全面调查,故本选项不符合题意;B.调查亚运会100m游泳决赛运动员兴奋剂的使用情况,适合全面调查,故本选项不符合题意;C.调查某批汽车的抗撞击能力,适合抽样调查,故本选项符合题意;D.调查一架“歼10”隐形战斗机各零部件的质量,适合全面调查,故本选项不符合题意.故选:C.7.如图,已知直线AB和AB上一点C,过点C作直线AB的垂线,步骤如下:第一步:以点C为圆心,以任意长为半径作弧,交直线AB于点D和点E;第二步:分别以点D和点E为圆心,以a为半径作弧,两弧交于点F;第三步:作直线CF,直线CF即为所求.下列关于a的说法正确的是(  )A.a≥DE的长B.a≤DE的长C.a>DE的长D.a<DE的长【解答】解:由作图可知,分别以点D和点E为圆心,以a为半径作弧,两弧交于点F,此时a>DE,故选:C.8.“今有井径五尺,不知其深,立五尺木于井上,从木末望水岸,入径四寸,问井深几何?”这是我国古代数学著作《九章算术》中的“井深几何”问题,它的题意可以由示意图获得,设并深为x尺,所列方程正确的是(  )A.=B.=C.=D.=【解答】解:如图,设AD交BE于K.第20页(共20页) ∵DK∥BC,∴△EKD∽△EBC,∴=,∴=,故选:A.9.甲、乙、丙、丁四人10次随堂测验的成绩如图所示,从图中可以看出这10次测验平均成绩较高且较稳定的是(  )A.甲B.乙C.丙D.丁【解答】解:由折线统计图得:丙、丁的成绩在92附近波动,甲、乙的成绩在91附近波动,∴丙、丁的平均成绩高于甲、乙,由折线统计图得:丙成绩的波动幅度小于丁成绩的波动幅度,∴这四人中丙的平均成绩好又发挥稳定,故选:C.10.如图,四边形ABCD是菱形,BC=2,∠ABC=60°,对角线AC与BD相交于点O,线段BD沿射线AD方向平移,平移后的线段记为PQ,射线PQ与射线AC交于点M,连接PC,设OM长为x,△PMC的面积为y,下列图象能正确反映出y与x的函数关系的是(  )第20页(共20页) A.B.C.D.【解答】解:∵四边形ABCD是菱形,∴AD=BC=2,∠BAD=180°﹣∠ABC=120°,∴=60°,∴△DAC是等边三角形,∴AD=AC=2,∴AO=CO==1,设OM=x,∵AC⊥BD,PQ为BD平移而来,∴∠AOD=∠AMP=90°,∴△AMP为直角三角形,∴PM=AM•tan∠PAM=(1+x),①当点M在线段OC上(不含点O)时,即0≤x<1,此时CM=1﹣x,则y=(1﹣x)×(1+x)=﹣x2+,∴0≤x<1,函数图象开口应朝下,故B、C不符合题意,②当点M'在线段OC延长线上时,即x>1,如图所示:此时CM'=x﹣1,则y=(x﹣1)×=,∴只有D选项符合题意,故选:D.二、填空题(本题包括8小题,每小题3分,共24分)11.建党100周年期间,我市人社系统不断提升服务能力和水平,让我市约1300000参保人员获得更高质量的社会保障福祉,数据1300000用科学记数法表示为 1.3×106 .【解答】解:数据1300000用科学记数法表示为1.3×106.故答案为:1.3×106.12.分解因式:2x2﹣2= 2(x+1)(x﹣1) .【解答】解:2x2﹣2=2(x2﹣1)=2(x+1)(x﹣1).故答案为:2(x+1)(x﹣1).13.计算:|﹣2|+= 2+ .【解答】解:原式=2﹣+2=2+.故答案为:2+.14.从不等式组的所有整数解中任取一个数,它是偶数的概率是  .第20页(共20页) 【解答】解:∵,由①得:x≥1,由②得:x≤5,∴不等式组的解集为:1≤x≤5,∴整数解有:1,2,3,4,5;∴它是偶数的概率是.故答案为.15.如图,⊙A,⊙B,⊙C两两不相交,且半径都等于2,则图中三个扇形(即阴影部分)的面积之和为 2π .(结果保留π)【解答】解:∵三个扇形的半径都是2,∴而三个圆心角的和是180°,∴图中的三个扇形(即三个阴影部分)的面积之和为=2π.故答案为:2π.16.如图,在平面直角坐标系xOy中,点A在x轴负半轴上,点B在y轴正半轴上,⊙D经过A,B,O,C四点,∠ACO=120°,AB=4,则圆心点D的坐标是 (﹣,1) .【解答】解:∵四边形ABOC为圆的内接四边形,∴∠ABO+∠ACO=180°,∴∠ABO=180°﹣120°=60°,∵∠AOB=90°,∴AB为⊙D的直径,∴D点为AB的中点,在Rt△ABO中,∵∠ABO=60°,∴OB=AB=2,∴OA=OB=2,∴A(﹣2,0),B(0,2),∴D点坐标为(﹣,1).故答案为(﹣,1).17.如图,四边形ABCD是平行四边形,以点B为圆心,BC的长为半径作弧交AD于点E,分别以点C,E为圆心、大于CE的长为半径作弧,两弧交于点P,作射线BP交AD的延长线于点F,∠CBE=60°,BC=6,则BF的长为 6 .第20页(共20页) 【解答】解:由作法得BE=BC=6,BF平分∠CBE,∴∠CBF=∠EBF=∠CBE=30°,∵四边形ABCD为平行四边形,∴AD∥BC,∴∠F=∠CBF,∴∠F=∠EBF=30°,∴BE=FE,过E点作EH⊥BF于H,如图,则BH=FH,在Rt△BEH中,∵EH=BE=3,∴BH=EH=3,∴BF=2BH=6.故答案为6.18.如图,四边形ABCD为矩形,AB=2,AD=2,点P为边AB上一点,以DP为折痕将△DAP翻折,点A的对应点为点A′,连接AA′,AA′交PD于点M,点Q为线段BC上一点,连接AQ,MQ,则AQ+MQ的最小值是 4 .【解答】解:如图,作点A关于BC的对称点T,取AD的中点R,连接BT,QT,RT,TM.∵四边形ABCD是矩形,∴∠RAT=90°,∵AR=DR=,AT=2AB=4,第20页(共20页) ∴RT===5,∵A,A′关于DP对称,∴AA′⊥DP,∴∠AMD=90°,∵AR=RD,∴RM=AD=,∵MT≥RT﹣RM,∴MT≥4,∴MT的最小值为4,∵QA+QM=QT+QM≥MT,∴QA+QM≥4∴QA+QM的最小值为4.故答案为:4.三、解答题(第19题8分,第20题14分,共22分)19.(8分)先化简,再求值:÷﹣,其中x=+4.【解答】解:原式=•﹣=﹣=.把x=+4代入,原式==2.20.(14分)某校七、八年级各有500名学生,为了解该校七、八年级学生对党史知识的掌握情况,从七、八年级学生中各随机抽取15人进行党史知识测试,统计这部分学生的测试成绩(成绩均为整数,满分10分,8分及8分以上为优秀),相关数据统计整理如下:七年级抽取学生的成绩:6,6,6,8,8,8,8,8,8,8,9,9,9,9,10.七、八年级抽取学生的测试成绩统计表年级七年级八年级平均数88众数a7中位数8b优秀率80%60%(1)填空:a= 8 ,b= 8 .(2)根据以上数据,你认为该校七、八年级中,哪个年级的学生党史知识掌握得较好?请说明理由(写出一条即可).(3)请估计七、八年级学生对党史知识掌握能够达到优秀的总人数;(4)现从七、八年级获得10分的4名学生中随机抽取2人参加市党史知识竞赛,请用列表法或画树状图法,求出被选中的2人恰好是七、八年级各1人的概率.第20页(共20页) 【解答】解:(1)由众数的定义得:a=8,八年级抽取学生的测试成绩的中位数为8(分),故答案为:8,8;(2)七年级的学生党史知识掌握得较好,理由如下:∵七年级的优秀率大于八年级的优秀率,∴七年级的学生党史知识掌握得较好;(3)500×80%+500×60%=700(人),即估计七、八年级学生对党史知识掌握能够达到优秀的总人数为700人;(4)把七年级获得10分的学生记为A,八年级获得10分的学生记为B,画树状图如图:共有12种等可能的结果,被选中的2人恰好是七、八年级各1人的结果有8种,∴被选中的2人恰好是七、八年级各1人的概率为=.四、解答题(本题10分)21.(10分)如图,直线y=x﹣交x轴于点M,四边形OMAE是矩形,S矩形OMAE=4,反比例函数y=(x>0)的图象经过点A,EA的延长线交直线y=x﹣于点D.(1)求反比例函数的解析式;(2)若点B在x轴上,且AB=AD,求点B的坐标.【解答】解:(1)当y=0时,即0=x﹣,解得x=1,∴直线y=x﹣交x轴于点M(1,0),即OM=1,又∵S矩形OMAE=4,∴AM=OE=4,∴A(1,4)代入反比例函数y=得,k=4,∴反比例函数的关系式为y=;(2)当y=4时,即4=x﹣,解得x=6,即D(6,4),而A(1,4),∴AD=DE﹣AE=6﹣1=5,由于AB=AD=5,AM=4,点B在x轴上,第20页(共20页) 在Rt△AMB中,由勾股定理得,MB==3,①当点B在点M的左侧时,点B的横坐标为1﹣3=﹣2,∴点B(﹣2,0),②当点B在点M的右侧时,点B的横坐标为1+3=4,∴点B(4,0),因此点B的坐标为(﹣2,0)或(4,0).五、解答题(第22题10分,第23题12分,共22分)22.(10分)如图,小华遥控无人机从A处飞行到对面大厦MN的顶端M,无人机飞行方向与水平方向的夹角为37°,小华在A点测得大厦底部N的俯角为31°,两楼之间一棵树EF的顶点E恰好在视线AN上,已知树的高度为6m,且=,楼AB,MN,树EF均垂直于地面,问:无人机飞行的距离AM约是多少米?(结果保留整数.参考数据:cos31°≈0.86,tan31°≈0.60,cos37°≈0.80,tan37°≈0.75)【解答】解:过A作AC⊥MN于C,如图所示:则CN=AB,AC=BN,∵=,∴=,由题意得:EF=6m,AB⊥BN,EF⊥BN,∴AB∥EF,∴△EFN∽△ABN,∴==,∴AB=3EF=18(m),∴CN=18m,在Rt△ACN中,tan∠CAN==tan31°≈0.60=,∴AC≈CN=×18=30(m),在Rt△ACM中,cos∠MAC==cos37°≈0.80=,∴AM≈AC=×30=38(m),第20页(共20页) 即无人机飞行的距离AM约是38m.23.(12分)如图,△ABC内接于⊙O,AB是⊙O的直径,过⊙O外一点D作DG∥BC,DG交线段AC于点G,交AB于点E,交⊙O于点F,连接DB,CF,∠A=∠D.(1)求证:BD与⊙O相切;(2)若AE=OE,CF平分∠ACB,BD=12,求DE的长.【解答】(1)证明:如图1,延长DB至H,∵DG∥BC,∴∠CBH=∠D,∵∠A=∠D,∴∠A=∠CBH,∵AB是⊙O的直径∴∠ACB=90°,∴∠A+∠ABC=90°,∴∠CBH+∠ABC=90°,∴∠ABD=90°,∴BD与⊙O相切;(2)解:如图2,连接OF,第20页(共20页) ∵CF平分∠ACB,∴∠ACF=∠BCF,∴,∴OF⊥AB,∵BD⊥AB,∴OF∥BD,∴△EFO∽△EDB,∴,∵AE=OE,∴,∴=,∴OF=4,∴BE=OE+OB=2+4=6,∴DE===6.六、解答题(本题14分)24.(14分)某工厂生产并销售A,B两种型号车床共14台,生产并销售1台A型车床可以获利10万元;如果生产并销售不超过4台B型车床,则每台B型车床可以获利17万元,如果超出4台B型车床,则每超出1台,每台B型车床获利将均减少1万元.设生产并销售B型车床x台.(1)当x>4时,完成以下两个问题:①请补全下面的表格:A型B型车床数量/台 14﹣x x每台车床获利/万元10 21﹣x ②若生产并销售B型车床比生产并销售A型车床获得的利润多70万元,问:生产并销售B型车床多少台?(2)当0<x≤14时,设生产并销售A,B两种型号车床获得的总利润为W万元,如何分配生产并销售A,B两种车床的数量,使获得的总利润W最大?并求出最大利润.【解答】解:(1)①由题意得,生产并销售B型车床x台时,生产并销售A型车床(14﹣x)台,当x>4时,每台B型车床可以获利[17﹣(x﹣4)]=(21﹣x)万元.故答案应为:14﹣x,21﹣x;②由题意得方程10(14﹣x)+70=[17﹣(x﹣4)]x,解得x1=10,x2=21(舍去),答:生产并销售B型车床10台;(2)当0<x≤4时,总利润W=10(14﹣x)+17x,整理得,W=3x+140,第20页(共20页) ∵3>0,∴当x=4时总利润W最大为3×4+140=152(万元);当x≥>4时,总利润W=10(14﹣x)+[17﹣(x﹣4)]x,整理得W=﹣x2+11x+140,∵﹣1<0,∴当x=﹣=5.5时总利润W最大,又由题意x只能取整数,∴当x=5或x=6时,∴当x=5时,总利润W最大为﹣52+11×5+140=170(万元)又∵152<170,∴当x=5或x=6时,总利润W最大为170万元,而14﹣5=9,14﹣6=8,答:当生产并销售A,B两种车床各为9台、5台或8台、6台时,使获得的总利润W最大;最大利润为170万元.七、解答题(本题14分)25.(14分)如图,四边形ABCD是正方形,△ECF为等腰直角三角形,∠ECF=90°,点E在BC上,点F在CD上,N为EF的中点,连接NA,以NA,NF为邻边作▱ANFG,连接DG,DN,将Rt△ECF绕点C顺时针旋转,旋转角为α(0°≤α≤360°).(1)如图1,当α=0°时,DG与DN的关系为 DG⊥DN,DG=DN .(2)如图2,当0°<α<45°时,(1)中的结论是否成立?若成立,请写出证明过程;若不成立,请说明理由.(3)在Rt△ECF的旋转过程中,当▱ANFG的顶点G落在正方形ABCD的边上,且AB=12,EC=5时,连接GN,请直接写出GN的长.【解答】解:(1)如图1中,连接AE,AF,CN.∵四边形ABCD是正方形,∴AB=AD=CB=CD,∠B=∠ADF=90°,∵CE=CF,∴BE=DF,∴△ABE≌△ADF(SAS),第20页(共20页) ∴AE=AF,∵EN=NF,∴AN⊥EF,CN=NF=EN,∵CE=CF,EN=NF,∴CN⊥EF,∴A,N,C共线,∵四边形ANFG是平行四边形,∠ANF=90°,∴四边形ANFG是矩形,∴AG=FN=CN,∠GAN=90°,∵∠DCA=∠DAC=45°,∴∠GAD=∠NCD=45°,∴△GAD≌△NCD(SAS),∴DG=DN,∠ADG=∠CDN,∴∠GDN=∠ADC=90°,∴DG⊥DN,DG=DN.故答案为:DG⊥DN,DG=DN;(2)结论成立.理由:如图2中,作直线EF交AD于J,交BC于K,连接CN.∵四边形ANFG是平行四边形,∴AG∥KJ,AG=NF,∴∠DAG=∠J,∵AJ∥BC,∴∠J=∠CKE,∵CE=CF,EN=NF,∴CN=NE=NF=AG,CN⊥EF,∴∠ECN=∠CEN=45°,∴∠EKC+∠ECK=∠ECK+∠DCN,∴∠DCN=∠CKE,∴∠GAD=∠DCN,∵GA=CN,AD=CD,∴△GAD≌△NCD(SAS),∴DG=DN,∠ADG=∠CDN,∴∠GDN=∠ADC=90°,∴DG⊥DN,DG=DN;(3)如图3﹣1中,当点G落在AD上时,第20页(共20页) ∵△ECN是等腰直角三角形,EC=5,∴EN=CN=NF=5,∵四边形ANFG是平行四边形,∴AG=NF=5,∵AD﹣CD=12,∴DG=DN=7,∴GN=7.如图3﹣2中,当点G落在AB上时,同法可证,CN=5,∵△DAG≌△DCN,∴AG=CN=5,∴BG=AB﹣AG=7,BN=BC+CN=17,∴GN===13.综上所述,满足条件的GN的值为7或13.八、解答题(本题14分)26.(14分)如图,抛物线y=﹣x2+2x+6与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,直线y=x﹣2与y轴交于点D,与x轴交于点E,与直线BC交于点F.(1)点F的坐标为 (4,2) ;(2)如图1,点P为第一象限抛物线上的一点,PF的延长线交OB于点Q,PM⊥BC于点M,QN⊥BC于点N,若=,求点P的坐标;(3)如图2,点S为第一象限抛物线上的一点,且点S在射线DE上方,动点G从点E出发,沿射线DE方向以每秒4个单位长度的速度运动,当SE=SG,且tan∠SEG=时,求点G的运动时间t.第20页(共20页) 【解答】解:(1)在抛物线y=﹣x2+2x+6中,令y=0,则﹣x2+2x+6=0,∴x=﹣2或x=6,∴A(﹣2,0),B(6,0),令y=0,则x=6,∴C(0,6),在直线y=x﹣2,令y=0,则x=2,∴E(2,0),令x=0,则y=﹣2,∴D(0,﹣2),设直线BC的解析式为y=kx+b,∴,∴,∴y=﹣x+6,联立,解得,∴F(4,2),故答案为(4,2);(2)如图1,过点P作PG⊥x轴于点G,过点F作FH⊥x轴交于点H,∵PM⊥BC,QN⊥BC,∴∠PMF=∠NFQ,∴△PMF∽△QNF,∴=,∵=,第20页(共20页) ∴=,∵FH∥PG,∴==,∵FH=2,∴PG=,∴P点纵坐标为,∴﹣x2+2x+6=,∴x=1或x=3,∴P(1,)或P(3,);(3)如图2,过点S作SK⊥EG于点K,SH⊥x轴于点H,交EG于点L,由题意得,EG=4,∵SE=SG,∴EK=GK=EG=2,在Rt△SEK中,tan∠SEG==,∴SK=,∵E(2,0),D(0,﹣2),∴OE=OD,∴△ODE是等腰直角三角形,∴∠OED=45°,∴∠KEH=∠OED=45°,∴△EHL为等腰直角三角形,∴LK=SK=,SL=SK=2t,∴EL=EK﹣LK=2t,∴EH=LH=t,∴OH=OE+EH=t+2,SH=SL+LH=3t,∴S(t+2,3t),∴﹣(t+2)2+2(t+2)+6=3t,∴t=2或t=﹣8(舍),∴点G的运动时间为2s.声明:试题解析著作权属菁优网所有,未经书面同意,不得复制发布日期:2021/8/208:58:16;用户:柯瑞;邮箱:ainixiaoke00@163.com;学号:500557第20页(共20页)

10000+的老师在这里下载备课资料