2021年江苏省扬州市中考数学试卷一、选择题(本大题共有8小题,每小题3分,共24分,在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置上)1.实数100的倒数是( )A.100B.﹣100C.D.﹣2.把如图中的纸片沿虚线折叠,可以围成一个几何体,这个几何体的名称是( )A.五棱锥B.五棱柱C.六棱锥D.六棱柱3.下列生活中的事件,属于不可能事件的是( )A.3天内将下雨B.打开电视,正在播新闻C.买一张电影票,座位号是偶数号D.没有水分,种子发芽4.不论x取何值,下列代数式的值不可能为0的是( )A.x+1B.x2﹣1C.D.(x+1)25.如图,点A、B、C、D、E在同一平面内连接AB、BC、CD、DE、EA,若∠BCD=100°,则∠A+∠B+∠D+∠E=( )A.220°B.240°C.260°D.280°6.如图,在4×4的正方形网格中有两个格点A、B,连接AB,在网格中再找一个格点C,使得△ABC是等腰直角三角形,满足条件的格点C的个数是( )A.2B.3C.4D.57.如图,一次函数y=x+的图象与x轴、y轴分别交于点A,B,把直线AB绕点B顺时针旋转30°交x轴于点C,则线段AC长为( )A.+B.3C.2+D.+8.如图,点P是函数y=(k1>0,x>0)的图象上一点,过点P分别作x轴和y轴的垂线,垂足分别为点A、B,交函数y=(k2>0,x>0)的图象于点C、D,连接OC、OD、CD、AB,其中k1>k2.下列结论:①CD∥AB;②S△OCD=;③S△DCP=,其中正确的是( )第21页(共21页)
A.①②B.①③C.②③D.①二、填空题(本大题共有10小题,每小题3分,共30分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)9.2021年扬州世界园艺博览会以“绿色城市,健康生活”为主题,在某搜索引擎中输入“扬州世界园艺博览会”约有3020000个相关结果,数据3020000用科学记数法表示为 .10.计算:20212﹣20202= .11.在平面直角坐标系中,若点P(1﹣m,5﹣m)在第二象限,则整数m的值为 .12.已知一组数据:a、4、5、6、7的平均数为5,则这组数据的中位数是 .13.扬州雕版印刷技艺历史悠久,元代数学家朱世杰的《算学启蒙》一书曾刻于扬州,该书是中国较早的数学著作之一,书中记载一道问题:“今有良马日行二百四十里,驽马日行一百五十里,驽马先行一十二日,问良马几何日追及之?”题意是:快马每天走240里,慢马每天走150里,慢马先走12天,试问快马几天追上慢马?答:快马 天追上慢马.14.如图是某圆柱体果罐,它的主视图是边长为10cm的正方形,该果罐侧面积为 cm2.15.如图,在Rt△ABC中,∠ACB=90°,点D是AB的中点,过点D作DE⊥BC,垂足为点E,连接CD,若CD=5,BC=8,则DE= .16.如图,在▱ABCD中,点E在AD上,且EC平分∠BED,若∠EBC=30°,BE=10,则▱ABCD的面积为 .17.如图,在△ABC中,AC=BC,矩形DEFG的顶点D、E在AB上,点F、G分别在BC、AC上,若CF=4,BF=3,且DE=2EF,则EF的长为 .18.将黑色圆点按如图所示的规律进行排列:图中黑色圆点的个数依次为:1,3,6,10,…,将其中所有能被3整除的数按从小到大的顺序重新排列成一组新数据,则新数据中的第33个数为 .第21页(共21页)
三、解答题(本大题共有10小题,共96分,请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)19.(8分)计算或化简:(1)(﹣)0+|﹣3|+tan60°.(2)(a+b)÷(+).20.(8分)已知方程组的解也是关于x、y的方程ax+y=4的一个解,求a的值.21.(8分)为推进扬州市“青少年茁壮成长工程”,某校开展“每日健身操”活动,为了解学生对“每日健身操”活动的喜欢程度,随机抽取了部分学生进行调查,将调查信息结果绘制成如下尚不完整的统计图表:抽样调查各类喜欢程度人数统计表喜欢程度人数A.非常喜欢50人B.比较喜欢m人C.无所谓n人D.不喜欢16人根据以上信息,回答下列问题:(1)本次调查的样本容量是 ;(2)扇形统计图中表示A程度的扇形圆心角为 °,统计表中m= ;(3)根据抽样调查的结果,请你估计该校2000名学生中大约有多少名学生喜欢“每日健身操”活动(包含非常喜欢和比较喜欢).22.(8分)一张圆桌旁设有4个座位,丙先坐在了如图所示的座位上,甲、乙2人等可能地坐到①、②、③中的2个座位上.(1)甲坐在①号座位的概率是 ;(2)用画树状图或列表的方法,求甲与乙相邻而坐的概率.第21页(共21页)
23.(10分)为保障新冠病毒疫苗接种需求,某生物科技公司开启“加速”模式,生产效率比原先提高了20%,现在生产240万剂疫苗所用的时间比原先生产220万剂疫苗所用的时间少0.5天.问原先每天生产多少万剂疫苗?24.(10分)如图,在△ABC中,∠BAC的角平分线交BC于点D,DE∥AB,DF∥AC.(1)试判断四边形AFDE的形状,并说明理由;(2)若∠BAC=90°,且AD=2,求四边形AFDE的面积.25.(10分)如图,四边形ABCD中,AD∥BC,∠BAD=90°,CB=CD,连接BD,以点B为圆心,BA长为半径作⊙B,交BD于点E.(1)试判断CD与⊙B的位置关系,并说明理由;(2)若AB=2,∠BCD=60°,求图中阴影部分的面积.26.(10分)如图,在平面直角坐标系中,二次函数y=x2+bx+c的图象与x轴交于点A(﹣1,0)、B(3,0),与y轴交于点C.(1)b= ,c= ;(2)若点D在该二次函数的图象上,且S△ABD=2S△ABC,求点D的坐标;(3)若点P是该二次函数图象上位于x轴上方的一点,且S△APC=S△APB,直接写出点P的坐标.27.(12分)在一次数学探究活动中,李老师设计了一份活动单:已知线段BC=2,使用作图工具作∠BAC=30°,尝试操作后思考:(1)这样的点A唯一吗?(2)点A的位置有什么特征?你有什么感悟?“追梦”学习小组通过操作、观察、讨论后汇报:点A的位置不唯一,它在以BC为弦的圆弧上(点B、C除外),….小华同学画出了符合要求的一条圆弧(如图1).(1)小华同学提出了下列问题,请你帮助解决.第21页(共21页)
①该弧所在圆的半径长为 ;②△ABC面积的最大值为 ;(2)经过比对发现,小明同学所画的角的顶点不在小华所画的圆弧上,而在如图1所示的弓形内部,我们记为A′,请你利用图1证明∠BA′C>30°.(3)请你运用所学知识,结合以上活动经验,解决问题:如图2,已知矩形ABCD的边长AB=2,BC=3,点P在直线CD的左侧,且tan∠DPC=.①线段PB长的最小值为 ;②若S△PCD=S△PAD,则线段PD长为 .28.(12分)甲、乙两汽车出租公司均有50辆汽车对外出租,下面是两公司经理的一段对话:甲公司经理:如果我公司每辆汽车月租费3000元,那么50辆汽车可以全部租出.如果每辆汽车的月租费每增加50元,那么将少租出1辆汽车.另外,公司为每辆租出的汽车支付月维护费200元.乙公司经理:我公司每辆汽车月租费3500元,无论是否租出汽车,公司均需一次性支付月维护费共计1850元.说明:①汽车数量为整数;②月利润=月租车费﹣月维护费;③两公司月利润差=月利润较高公司的利润﹣月利润较低公司的利润.在两公司租出的汽车数量相等的条件下,根据上述信息,解决下列问题:(1)当每个公司租出的汽车为10辆时,甲公司的月利润是 元;当每个公司租出的汽车为 辆时,两公司的月利润相等;(2)求两公司月利润差的最大值;(3)甲公司热心公益事业,每租出1辆汽车捐出a元(a>0)给慈善机构,如果捐款后甲公司剩余的月利润仍高于乙公司月利润,且当两公司租出的汽车均为17辆时,甲公司剩余的月利润与乙公司月利润之差最大,求a的取值范围.第21页(共21页)
2021年江苏省扬州市中考数学试卷参考答案与试题解析一、选择题(本大题共有8小题,每小题3分,共24分,在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置上)1.实数100的倒数是( )A.100B.﹣100C.D.﹣【解答】解:100的倒数为,故选:C.2.把如图中的纸片沿虚线折叠,可以围成一个几何体,这个几何体的名称是( )A.五棱锥B.五棱柱C.六棱锥D.六棱柱【解答】解:由图可知:折叠后,该几何体的底面是五边形,则该几何体为五棱锥,故选:A.3.下列生活中的事件,属于不可能事件的是( )A.3天内将下雨B.打开电视,正在播新闻C.买一张电影票,座位号是偶数号D.没有水分,种子发芽【解答】解:A、3天内将下雨,是随机事件;B、打开电视,正在播新闻,是随机事件;C、买一张电影票,座位号是偶数号,是随机事件;D、没有水分,种子不可能发芽,故是不可能事件;故选:D.4.不论x取何值,下列代数式的值不可能为0的是( )A.x+1B.x2﹣1C.D.(x+1)2【解答】解:A、当x=﹣1时,x+1=0,故不合题意;B、当x=±1时,x2﹣1=0,故不合题意;C、分子是1,而1≠0,则≠0,故符合题意;D、当x=﹣1时,(x+1)2=0,故不合题意;故选:C.5.如图,点A、B、C、D、E在同一平面内连接AB、BC、CD、DE、EA,若∠BCD=100°,则∠A+∠B+∠D+∠E=( )第21页(共21页)
A.220°B.240°C.260°D.280°【解答】解:连接BD,∵∠BCD=100°,∴∠CBD+∠CDB=180°﹣100°=80°,∴∠A+∠ABC+∠E+∠CDE=360°﹣∠CBD﹣∠CDB=360°﹣80°=280°,故选:D.6.如图,在4×4的正方形网格中有两个格点A、B,连接AB,在网格中再找一个格点C,使得△ABC是等腰直角三角形,满足条件的格点C的个数是( )A.2B.3C.4D.5【解答】解:如图:分情况讨论:①AB为等腰直角△ABC底边时,符合条件的C点有0个;②AB为等腰直角△ABC其中的一条腰时,符合条件的C点有3个.故共有3个点,故选:B.7.如图,一次函数y=x+的图象与x轴、y轴分别交于点A,B,把直线AB绕点B第21页(共21页)
顺时针旋转30°交x轴于点C,则线段AC长为( )A.+B.3C.2+D.+【解答】解:∵一次函数y=x+的图像与x轴、y轴分别交于点A、B,令x=0,则y=,令y=0,则x=﹣,则A(﹣,0),B(0,),则△OAB为等腰直角三角形,∠ABO=45°,∴AB==2,过点C作CD⊥AB,垂足为D,∵∠CAD=∠OAB=45°,∴△ACD为等腰直角三角形,设CD=AD=x,∴AC==x,∵旋转,∴∠ABC=30°,∴BC=2CD=2x,∴BD==x,又BD=AB+AD=2+x,∴2+x=x,解得:x=+1,∴AC=x=(+1)=,故选:A.8.如图,点P是函数y=(k1>0,x>0)的图象上一点,过点P分别作x轴和y轴的垂线,垂足分别为点A、B,交函数y=(k2>0,x>0)的图象于点C、D,连接OC、OD、CD、AB,其中k1>k2.下列结论:①CD∥AB;②S△OCD=;③S△DCP=,其中正确的是( )第21页(共21页)
A.①②B.①③C.②③D.①【解答】解:∵PB⊥y轴,PA⊥x轴,点P在上,点C,D在上,设P(m,),则C(m,),A(m,0),B(0,),令,则,即D(,),∴PC=,PD=,∵,,即,又∠DPC=∠BPA,∴△PDC∽△PBA,∴∠PDC=∠PBC,∴CD∥AB,故①正确;△PDC的面积==,故③正确;S△OCD=S四边形OAPB﹣S△OCA﹣S△DPC==,故②错误;故选:B.二、填空题(本大题共有10小题,每小题3分,共30分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)9.2021年扬州世界园艺博览会以“绿色城市,健康生活”为主题,在某搜索引擎中输入“扬州世界园艺博览会”约有3020000个相关结果,数据3020000用科学记数法表示为 3.02×106 .【解答】解:将3020000用科学记数法表示为3.02×106.故答案为:3.02×106.10.计算:20212﹣20202= 4041 .第21页(共21页)
【解答】解:20212﹣20202=(2021+2020)(2021﹣2020)=4041×1=4041故答案为:4041.11.在平面直角坐标系中,若点P(1﹣m,5﹣m)在第二象限,则整数m的值为 2 .【解答】解:由题意得:,解得:,∴整数m的值为2,故答案为:2.12.已知一组数据:a、4、5、6、7的平均数为5,则这组数据的中位数是 5 .【解答】解:∵这组数据的平均数为5,则,解得:a=3,将这组数据从小到大重新排列为:3,4,5,6,7,观察数据可知最中间的数是5,则中位数是5.故答案为:5.13.扬州雕版印刷技艺历史悠久,元代数学家朱世杰的《算学启蒙》一书曾刻于扬州,该书是中国较早的数学著作之一,书中记载一道问题:“今有良马日行二百四十里,驽马日行一百五十里,驽马先行一十二日,问良马几何日追及之?”题意是:快马每天走240里,慢马每天走150里,慢马先走12天,试问快马几天追上慢马?答:快马 20 天追上慢马.【解答】解:设快马行x天追上慢马,则此时慢马行了(x+12)日,依题意,得:240x=150(x+12),解得:x=20,∴快马20天追上慢马,故答案为:20.14.如图是某圆柱体果罐,它的主视图是边长为10cm的正方形,该果罐侧面积为 100π cm2.【解答】解:由题意得圆柱的底面直径为10cm,高为10cm,∴侧面积=10π×10=100π(cm2).故答案为:100π.15.如图,在Rt△ABC中,∠ACB=90°,点D是AB的中点,过点D作DE⊥BC,垂足为点E,连接CD,若CD=5,BC=8,则DE= 3 .第21页(共21页)
【解答】解:∵∠ACB=90°,DE⊥BC,∴DE∥AC,∵点D是AB的中点,∴E是BC的中点,AB=2CD=10,∴AC=2DE,∵BC=8,∴AC===6,∴DE=3.故答案为3.16.如图,在▱ABCD中,点E在AD上,且EC平分∠BED,若∠EBC=30°,BE=10,则▱ABCD的面积为 50 .【解答】解:过点E作EF⊥BC,垂足为F,∵∠EBC=30°,BE=10,∴EF=BE=5,∵四边形ABCD是平行四边形,∴AD∥BC,∴∠DEC=∠BCE,又EC平分∠BED,即∠BEC=∠DEC,∴∠BCE=∠BEC,∴BE=BC=10,∴四边形ABCD的面积=BC×EF=10×5=50,故答案为:50.17.如图,在△ABC中,AC=BC,矩形DEFG的顶点D、E在AB上,点F、G分别在BC、AC上,若CF=4,BF=3,且DE=2EF,则EF的长为 .第21页(共21页)
【解答】解:∵DE=2EF,设EF=x,则DE=2x,∵四边形DEFG是矩形,∴GF∥AB,∴△CGF∽△CAB,∴,即,∴AB=,∴AD+BE=AB﹣DE=,∵AC=BC,在△ADG和△BEF中,,∴△ADG≌△BEF(AAS),∴AD=BE=,在△BEF中,BE2+EF2=BF2,即,解得:x=或﹣(舍),∴EF=,故答案为:.18.将黑色圆点按如图所示的规律进行排列:图中黑色圆点的个数依次为:1,3,6,10,…,将其中所有能被3整除的数按从小到大的顺序重新排列成一组新数据,则新数据中的第33个数为 1275 .【解答】解:第①个图形中的黑色圆点的个数为:1,第②个图形中的黑色圆点的个数为:=3,第③个图形中的黑色圆点的个数为:=6,第21页(共21页)
第④个图形中的黑色圆点的个数为:=10,…第n个图形中的黑色圆点的个数为,则这列数为1,3,6,10,15,21,28,36,45,55,66,78,91,…,其中每3个数中,都有2个能被3整除,33÷2=16…1,16×3+2=50,则第33个被3整除的数为原数列中第50个数,即=1275,故答案为:1275.三、解答题(本大题共有10小题,共96分,请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)19.(8分)计算或化简:(1)(﹣)0+|﹣3|+tan60°.(2)(a+b)÷(+).【解答】解:(1)原式==4;(2)原式===ab.20.(8分)已知方程组的解也是关于x、y的方程ax+y=4的一个解,求a的值.【解答】解:方程组,把②代入①得:2(y﹣1)+y=7,解得:y=3,代入①中,解得:x=2,把x=2,y=3代入方程ax+y=4得,2a+3=4,解得:a=.21.(8分)为推进扬州市“青少年茁壮成长工程”,某校开展“每日健身操”活动,为了解学生对“每日健身操”活动的喜欢程度,随机抽取了部分学生进行调查,将调查信息结果绘制成如下尚不完整的统计图表:抽样调查各类喜欢程度人数统计表第21页(共21页)
喜欢程度人数A.非常喜欢50人B.比较喜欢m人C.无所谓n人D.不喜欢16人根据以上信息,回答下列问题:(1)本次调查的样本容量是 200 ;(2)扇形统计图中表示A程度的扇形圆心角为 90 °,统计表中m= 94 ;(3)根据抽样调查的结果,请你估计该校2000名学生中大约有多少名学生喜欢“每日健身操”活动(包含非常喜欢和比较喜欢).【解答】解:(1)16÷8%=200,则样本容量是200;(2)×360°=90°,则表示A程度的扇形圆心角为90°;200×(1﹣8%﹣20%﹣×100%)=94,则m=94;(3)=1440名,∴该校2000名学生中大约有1440名学生喜欢“每日健身操”活动.22.(8分)一张圆桌旁设有4个座位,丙先坐在了如图所示的座位上,甲、乙2人等可能地坐到①、②、③中的2个座位上.(1)甲坐在①号座位的概率是 ;(2)用画树状图或列表的方法,求甲与乙相邻而坐的概率.【解答】解:(1)∵丙坐了一张座位,∴甲坐在①号座位的概率是;(2)画树状图如图:共有6种等可能的结果,甲与乙两同学恰好相邻而坐的结果有4种,第21页(共21页)
∴甲与乙相邻而坐的概率为.23.(10分)为保障新冠病毒疫苗接种需求,某生物科技公司开启“加速”模式,生产效率比原先提高了20%,现在生产240万剂疫苗所用的时间比原先生产220万剂疫苗所用的时间少0.5天.问原先每天生产多少万剂疫苗?【解答】解:设原先每天生产x万剂疫苗,由题意可得:,解得:x=40,经检验:x=40是原方程的解,∴原先每天生产40万剂疫苗.24.(10分)如图,在△ABC中,∠BAC的角平分线交BC于点D,DE∥AB,DF∥AC.(1)试判断四边形AFDE的形状,并说明理由;(2)若∠BAC=90°,且AD=2,求四边形AFDE的面积.【解答】解:(1)四边形AFDE是菱形,理由是:∵DE∥AB,DF∥AC,∴四边形AFDE是平行四边形,∵AD平分∠BAC,∴∠FAD=∠EAD,∵DE∥AB,∴∠EDA=∠FAD,∴∠EDA=∠EAD,∴AE=DE,∴平行四边形AFDE是菱形;(2)∵∠BAC=90°,∴四边形AFDE是正方形,∵AD=,∴AF=DF=DE=AE==2,∴四边形AFDE的面积为2×2=4.25.(10分)如图,四边形ABCD中,AD∥BC,∠BAD=90°,CB=CD,连接BD,以点B为圆心,BA长为半径作⊙B,交BD于点E.(1)试判断CD与⊙B的位置关系,并说明理由;(2)若AB=2,∠BCD=60°,求图中阴影部分的面积.第21页(共21页)
【解答】解:(1)过点B作BF⊥CD,垂足为F,∵AD∥BC,∴∠ADB=∠CBD,∵CB=CD,∴∠CBD=∠CDB,∴∠ADB=∠CDB.在△ABD和△FBD中,,∴△ABD≌△FBD(AAS),∴BF=BA,则点F在圆B上,∴CD与⊙B相切;(2)∵∠BCD=60°,CB=CD,∴△BCD是等边三角形,∴∠CBD=60°∵BF⊥CD,∴∠ABD=∠DBF=∠CBF=30°,∴∠ABF=60°,∵AB=BF=,∴AD=DF=AB·tan30°=2,∴阴影部分的面积=S△ABD﹣S扇形ABE==.26.(10分)如图,在平面直角坐标系中,二次函数y=x2+bx+c的图象与x轴交于点A(﹣1,0)、B(3,0),与y轴交于点C.(1)b= ﹣2 ,c= ﹣3 ;(2)若点D在该二次函数的图象上,且S△ABD=2S△ABC,求点D的坐标;(3)若点P是该二次函数图象上位于x轴上方的一点,且S△APC=S△APB,直接写出点P的坐标.第21页(共21页)
【解答】解:(1)∵点A和点B在二次函数y=x2+bx+c图像上,则,解得:,故答案为:﹣2,﹣3;(2)连接BC,由题意可得:A(﹣1,0),B(3,0),C(0,﹣3),y=x2﹣2x﹣3,∴S△ABC==6,∵S△ABD=2S△ABC,设点D(m,m2﹣2m﹣3),∴|yD|=2×6,即×4×|m2﹣2m﹣3|=2×6,解得:m=或,代入y=x2﹣2x﹣3,可得:y值都为6,∴D(,6)或(,6);(3)设P(n,n2﹣2n﹣3),∵点P在抛物线位于x轴上方的部分,∴n<﹣1或n>3,当点P在点A左侧时,即n<﹣1,可知点C到AP的距离小于点B到AP的距离,∴S△APC<S△APB,不成立;当点P在点B右侧时,即n>3,∵△APC和△APB都以AP为底,若要面积相等,则点B和点C到AP的距离相等,即BC∥AP,设直线BC的解析式为y=kx+p,则,解得:,则设直线AP的解析式为y=x+q,将点A(﹣1,0)代入,第21页(共21页)
则﹣1+q=0,解得:q=1,则直线AP的解析式为y=x+1,将P(n,n2﹣2n﹣3)代入,即n2﹣2n﹣3=n+1,解得:n=4或n=﹣1(舍),n2﹣2n﹣3=5,∴点P的坐标为(4,5).27.(12分)在一次数学探究活动中,李老师设计了一份活动单:已知线段BC=2,使用作图工具作∠BAC=30°,尝试操作后思考:(1)这样的点A唯一吗?(2)点A的位置有什么特征?你有什么感悟?“追梦”学习小组通过操作、观察、讨论后汇报:点A的位置不唯一,它在以BC为弦的圆弧上(点B、C除外),….小华同学画出了符合要求的一条圆弧(如图1).(1)小华同学提出了下列问题,请你帮助解决.①该弧所在圆的半径长为 2 ;②△ABC面积的最大值为 ;(2)经过比对发现,小明同学所画的角的顶点不在小华所画的圆弧上,而在如图1所示的弓形内部,我们记为A′,请你利用图1证明∠BA′C>30°.(3)请你运用所学知识,结合以上活动经验,解决问题:如图2,已知矩形ABCD的边长AB=2,BC=3,点P在直线CD的左侧,且tan∠DPC=.①线段PB长的最小值为 ;②若S△PCD=S△PAD,则线段PD长为 .【解答】解:(1)①设O为圆心,连接BO,CO,∵∠BCA=30°,∴∠BOC=60°,又OB=OC,∴△OBC是等边三角形,∴OB=OC=BC=2,即半径为2;第21页(共21页)
②∵△ABC以BC为底边,BC=2,∴当点A到BC的距离最大时,△ABC的面积最大,如图,过点O作BC的垂线,垂足为E,延长EO,交圆于D,∴BE=CE=1,DO=BO=2,∴OE=,∴DE=,∴△ABC的最大面积为=;(2)如图,延长BA′,交圆于点D,连接CD,∵点D在圆上,∴∠BDC=∠BAC,∵∠BA′C=∠BDC+∠A′CD,∴∠BA′C>∠BDC,∴∠BA′C>∠BAC,即∠BA′C>30°;(3)①如图,当点P在BC上,且PC=时,∵∠PCD=90°,AB=CD=2,AD=BC=3,∴tan∠DPC=,为定值,连接PD,设点Q为PD中点,以点Q为圆心,PD为半径画圆,∴当点P在优弧CPD上时,tan∠DPC=,连接BQ,与圆Q交于P′,此时BP′即为BP的最小值,过点Q作QE⊥BE,垂足为E,∵点Q是PD中点,∴点E为PC中点,即QE=CD=1,PE=CE=PC=,∴BE=BC﹣CE=3﹣=,∴BQ=,∵PD=,∴圆Q的半径为,第21页(共21页)
∴BP′=BQ﹣P′Q=,即BP的最小值为;②∵AD=3,CD=2,S△PCD=S△PAD,则,∴△PAD中AD边上的高=△PCD中CD边上的高,即点P到AD的距离和点P到CD的距离相等,则点P到AD和CD的距离相等,即点P在∠ADC的平分线上,如图,过点C作CF⊥PD,垂足为F,∵PD平分∠ADC,∴∠ADP=∠CDP=45°,∴△CDF为等腰直角三角形,又CD=2,∴CF=DF=,∵tan∠DPC=,∴PF=,∴PD=DF+PF=.28.(12分)甲、乙两汽车出租公司均有50辆汽车对外出租,下面是两公司经理的一段对话:甲公司经理:如果我公司每辆汽车月租费3000元,那么50辆汽车可以全部租出.如果每辆汽车的月租费每增加50元,那么将少租出1辆汽车.另外,公司为每辆租出的汽车支付月维护费200元.乙公司经理:我公司每辆汽车月租费3500元,无论是否租出汽车,公司均需一次性支付月维护费共计1850元.说明:①汽车数量为整数;②月利润=月租车费﹣月维护费;③两公司月利润差=月利润较高公司的利润﹣月利润较低公司的利润.在两公司租出的汽车数量相等的条件下,根据上述信息,解决下列问题:(1)当每个公司租出的汽车为10辆时,甲公司的月利润是 48000 元;当每个公司租出的汽车为 37 辆时,两公司的月利润相等;(2)求两公司月利润差的最大值;(3)甲公司热心公益事业,每租出1辆汽车捐出a元(a>0)给慈善机构,如果捐款后甲公司剩余的月利润仍高于乙公司月利润,且当两公司租出的汽车均为17辆时,甲公司剩余的月利润与乙公司月利润之差最大,求a的取值范围.【解答】解:(1)[(50﹣10)×50+3000]×10﹣200×10=48000元,当每个公司租出的汽车为10辆时,甲公司的月利润是48000元;第21页(共21页)
设每个公司租出的汽车为x辆,由题意可得:[(50﹣x)×50+3000]x﹣200x=3500x﹣1850,解得:x=37或x=﹣1(舍),∴当每个公司租出的汽车为37辆时,两公司的月利润相等;(2)设两公司的月利润分别为y甲,y乙,月利润差为y,则y甲=[(50﹣x)×50+3000]x﹣200x,y乙=3500x﹣1850,当甲公司的利润大于乙公司时,0<x<37,y=y甲﹣y乙=[(50﹣x)×50+3000]x﹣200x﹣(3500x﹣1850)=﹣50x2+1800x+1850,当x==18时,利润差最大,且为18050元;当乙公司的利润大于甲公司时,37<x≤50,y=y乙﹣y甲=3500x﹣1850﹣[(50﹣x)×50+3000]x+200x=50x2﹣1800x﹣1850,∵对称轴为直线x==18,当x=50时,利润差最大,且为33150元;综上:两公司月利润差的最大值为33150元;(3)∵捐款后甲公司剩余的月利润仍高于乙公司月利润,则利润差为y=﹣50x2+1800x+1850﹣ax=﹣50x2+(1800﹣a)x+1850,对称轴为直线x=,∵x只能取整数,且当两公司租出的汽车均为17辆时,月利润之差最大,∴,解得:50<a<150.声明:试题解析著作权属菁优网所有,未经书面同意,不得复制发布日期:2021/6/238:58:16;用户:柯瑞;邮箱:ainixiaoke00@163.com;学号:500557第21页(共21页)