2020年湖北省恩施州中考数学试卷一、选择题(本大题共有12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将选择项前的字母代号填涂在答题卷相应位置上)1.5的绝对值是( )A.5B.﹣5C.D.﹣2.茶中精品“恩施绿”“利川红”享誉世界.去年恩施州茶叶产量约为120000吨,将数120000用科学记数法表示为( )A.12×104B.1.2×105C.1.2×106D.0.12×1063.下列交通标识,既是中心对称图形,又是轴对称图形的是( )A.B.C.D.4.下列计算正确的是( )A.a2•a3=a6B.a(a+1)=a2+aC.(a﹣b)2=a2﹣b2D.2a+3b=5ab5.函数y=的自变量的取值范围是( )A.x≥﹣1B.x≥﹣1且x≠0C.x>0D.x>﹣1且x≠06.“彩缕碧筠粽,香粳白玉团”.端午佳节,小明妈妈准备了豆沙粽2个、红枣粽4个、腊肉粽3个、白米粽2个,其中豆沙粽和红枣粽是甜粽.小明任意选取一个,选到甜粽的概率是( )A.B.C.D.7.在实数范围内定义运算“☆”:a☆b=a+b﹣1,例如:2☆3=2+3﹣1=4.如果2☆x=1,则x的值是( )A.﹣1B.1C.0D.28.我国古代数学著作《九章算术》“盈不足”一章中记载:“今有大器五小器一容三斛,大器一小器五容二斛,问大小器各容几何”.意思是:有大小两种盛酒的桶,已知5个大桶加上1个小桶可以盛酒3斛,1个大桶加上5个小桶可以盛酒2斛.问1个大桶、1个小桶分别可以盛酒多少斛?设1个大桶盛酒x斛,1个小桶盛酒y斛,下列方程组正确的是( )A.B.C.D.9.如图是由四个相同的小正方体组成的立体图形,它的主视图为( )A.B.C.D.10.甲乙两车从A城出发前往B城,在整个行程中,汽车离开A城的距离y与时刻t的对应关系如图所示,则下列结论错误的是( )第19页(共19页)
A.甲车的平均速度为60km/hB.乙车的平均速度为100km/hC.乙车比甲车先到B城D.乙车比甲车先出发1h11.如图,正方形ABCD的边长为4,点E在AB上且BE=1,F为对角线AC上一动点,则△BFE周长的最小值为( )A.5B.6C.7D.812.如图,已知二次函数y=ax2+bx+c的图象与x轴相交于A(﹣2,0)、B(1,0)两点.则以下结论:①ac>0;②二次函数y=ax2+bx+c的图象的对称轴为x=﹣1;③2a+c=0;④a﹣b+c>0.其中正确的有( )个.A.0B.1C.2D.3二、填空题(本大题共有4小题,每小题3分,共12分.不要求写出解答过程,请把答案直接填写在答题卷相应位置上)13.9的算术平方根是 .14.如图,直线l1∥l2,点A在直线l1上,点B在直线l2上,AB=BC,∠C=30°,∠1=80°,则∠2= .第19页(共19页)
15.如图,已知半圆的直径AB=4,点C在半圆上,以点A为圆心,AC为半径画弧交AB于点D,连接BC.若∠ABC=60°,则图中阴影部分的面积为 .(结果不取近似值)16.如图,在平面直角坐标系中,△ABC的顶点坐标分别为:A(﹣2,0),B(1,2),C(1,﹣2).已知N(﹣1,0),作点N关于点A的对称点N1,点N1关于点B的对称点N2,点N2关于点C的对称点N3,点N3关于点A的对称点N4,点N4关于点B的对称点N5,…,依此类推,则点N2020的坐标为 .三、解答题(本大题共有8个小题,共72分.请在答题卷指定区域内作答,解答时应写出文字说明、证明过程或演算步骤).17.(8分)先化简,再求值:(﹣)÷,其中m=.18.(8分)如图,AE∥BF,BD平分∠ABC交AE于点D,点C在BF上且BC=AB,连接CD.求证:四边形ABCD是菱形.19.(8分)某中学为了解九年级学生对新冠肺炎防控知识的掌握情况,从全校九年级学生中随机抽取部分学生进行调查.调查结果分为四类:A类﹣﹣非常了解;B类﹣﹣比较了解;C类﹣﹣般了解;D类﹣﹣不了解.现将调查结果绘制成如图不完整的统计图,请根据统计图中的信息解答下列问题:第19页(共19页)
(1)本次共调查了 名学生;(2)补全条形统计图;(3)D类所对应扇形的圆心角的大小为 ;(4)若该校九年级学生共有500名,根据以上抽样结果,估计该校九年级学生对新冠肺炎防控知识非常了解的约有 名.20.(8分)如图,一艘轮船以每小时30海里的速度自东向西航行,在A处测得小岛P位于其西北方向(北偏西45°方向),2小时后轮船到达B处,在B处测得小岛P位于其北偏东60°方向.求此时船与小岛P的距离(结果保留整数,参考数据:≈1.414,≈1.732).21.(8分)如图,在平面直角坐标系中,直线y=ax﹣3a(a≠0)与x轴、y轴分别相交于A、B两点,与双曲线y=(x>0)的一个交点为C,且BC=AC.(1)求点A的坐标;(2)当S△AOC=3时,求a和k的值.22.(10分)某校足球队需购买A、B两种品牌的足球.已知A品牌足球的单价比B品牌足球的单价高20元,且用900元购买A品牌足球的数量用720元购买B品牌足球的数量相等.(1)求A、B两种品牌足球的单价;(2)若足球队计划购买A、B两种品牌的足球共90个,且A品牌足球的数量不小于B品牌足球数量的2倍,购买两种品牌足球的总费用不超过8500元.设购买A品牌足球m个,总费用为W元,则该队共有几种购买方案?采用哪一种购买方案可使总费用最低?最低费用是多少元?23.(10分)如图1,AB是⊙O的直径,直线AM与⊙O相切于点A,直线BN与⊙O相切于点B,点C(异于点A)在AM上,点D在⊙O上,且CD=CA,延长CD与BN相交于点E,连接AD并延长交BN于点F.第19页(共19页)
(1)求证:CE是⊙O的切线;(2)求证:BE=EF;(3)如图2,连接EO并延长与⊙O分别相交于点G、H,连接BH.若AB=6,AC=4,求tan∠BHE.24.(12分)如图1,抛物线y=﹣x2+bx+c经过点C(6,0),顶点为B,对称轴x=2与x轴相交于点A,D为线段BC的中点.(1)求抛物线的解析式;(2)P为线段BC上任意一点,M为x轴上一动点,连接MP,以点M为中心,将△MPC逆时针旋转90°,记点P的对应点为E,点C的对应点为F.当直线EF与抛物线y=﹣x2+bx+c只有一个交点时,求点M的坐标.(3)△MPC在(2)的旋转变换下,若PC=(如图2).①求证:EA=ED.②当点E在(1)所求的抛物线上时,求线段CM的长.第19页(共19页)
2020年湖北省恩施州中考数学试卷参考答案与试题解析一、选择题(本大题共有12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将选择项前的字母代号填涂在答题卷相应位置上)1.5的绝对值是( )A.5B.﹣5C.D.﹣【解答】解:在数轴上,数5所表示的点到原点0的距离是5;故选:A.2.茶中精品“恩施绿”“利川红”享誉世界.去年恩施州茶叶产量约为120000吨,将数120000用科学记数法表示为( )A.12×104B.1.2×105C.1.2×106D.0.12×106【解答】解:120000=1.2×105,故选:B.3.下列交通标识,既是中心对称图形,又是轴对称图形的是( )A.B.C.D.【解答】解:根据轴对称图形与中心对称图形的概念,知:A、不是轴对称图形,也不是中心对称图形;B、不是轴对称图形,也不是中心对称图形;C、是轴对称图形,但不是中心对称图形;D、既是中心对称图形,又是轴对称图形.故选:D.4.下列计算正确的是( )A.a2•a3=a6B.a(a+1)=a2+aC.(a﹣b)2=a2﹣b2D.2a+3b=5ab【解答】解:A、a2•a3=a5,原计算错误,故此选项不符合题意;B、a(a+1)=a2+a,原计算正确,故此选项符合题意;C、(a﹣b)2=a2﹣2ab+b2,原计算错误,故此选项不符合题意;D、2a与3b不是同类项,不能合并,原计算错误,故此选项不符合题意;故选:B.5.函数y=的自变量的取值范围是( )A.x≥﹣1B.x≥﹣1且x≠0C.x>0D.x>﹣1且x≠0【解答】解:根据题意得,x+1≥0且x≠0,解得x≥﹣1且x≠0.故选:B.6.“彩缕碧筠粽,香粳白玉团”.端午佳节,小明妈妈准备了豆沙粽2个、红枣粽4个、腊肉粽3个、白米粽2个,其中豆沙粽和红枣粽是甜粽.小明任意选取一个,选到甜粽的概率是( )A.B.C.D.【解答】解:由题意可得:粽子总数为11个,其中6个为甜粽,所以选到甜粽的概率为:,故选:D.7.在实数范围内定义运算“☆”:a☆b=a+b﹣1,例如:2☆3=2+3﹣1=4.如果2☆x第19页(共19页)
=1,则x的值是( )A.﹣1B.1C.0D.2【解答】解:由题意知:2☆x=2+x﹣1=1+x,又2☆x=1,∴1+x=1,∴x=0.故选:C.8.我国古代数学著作《九章算术》“盈不足”一章中记载:“今有大器五小器一容三斛,大器一小器五容二斛,问大小器各容几何”.意思是:有大小两种盛酒的桶,已知5个大桶加上1个小桶可以盛酒3斛,1个大桶加上5个小桶可以盛酒2斛.问1个大桶、1个小桶分别可以盛酒多少斛?设1个大桶盛酒x斛,1个小桶盛酒y斛,下列方程组正确的是( )A.B.C.D.【解答】解:依题意,得:.故选:A.9.如图是由四个相同的小正方体组成的立体图形,它的主视图为( )A.B.C.D.【解答】解:从正面看易得第一列有2个正方形,第二列底层有1个正方形.故选:A.10.甲乙两车从A城出发前往B城,在整个行程中,汽车离开A城的距离y与时刻t的对应关系如图所示,则下列结论错误的是( )A.甲车的平均速度为60km/hB.乙车的平均速度为100km/hC.乙车比甲车先到B城D.乙车比甲车先出发1h【解答】解:由图象知:A.甲车的平均速度为=60km/h,故A选项不合题意;第19页(共19页)
B.乙车的平均速度为=100km/h,故B选项不合题意;C.甲10时到达B城,乙9时到达B城,所以乙比甲先到B城,故C选项不合题意;D.甲5时出发,乙6时出发,所以乙比甲晚出发1h,故此选项错误,故选:D.11.如图,正方形ABCD的边长为4,点E在AB上且BE=1,F为对角线AC上一动点,则△BFE周长的最小值为( )A.5B.6C.7D.8【解答】解:如图,连接ED交AC于一点F,连接BF,∵四边形ABCD是正方形,∴点B与点D关于AC对称,∴BF=DF,∴△BFE的周长=BF+EF+BE=DE+BE,此时△BEF的周长最小,∵正方形ABCD的边长为4,∴AD=AB=4,∠DAB=90°,∵点E在AB上且BE=1,∴AE=3,∴DE=,∴△BFE的周长=5+1=6,故选:B.12.如图,已知二次函数y=ax2+bx+c的图象与x轴相交于A(﹣2,0)、B(1,0)两点.则以下结论:①ac>0;②二次函数y=ax2+bx+c的图象的对称轴为x=﹣1;③2a+c=0;④a﹣b+c>0.其中正确的有( )个.A.0B.1C.2D.3【解答】解:对于①:二次函数开口向下,故a<0,与y轴的交点在y的正半轴,故c>0,故ac<0,因此①错误;对于②:二次函数的图象与x轴相交于A(﹣2,0)、B(1,0),由对称性可知,其对称轴为:,因此②错误;第19页(共19页)
对于③:设二次函数y=ax2+bx+c的交点式为y=a(x+2)(x﹣1)=ax2+ax﹣2a,比较一般式与交点式的系数可知:b=a,c=﹣2a,故2a+c=0,因此③正确;对于④:当x=﹣1时对应的y=a﹣b+c,观察图象可知x=﹣1时对应的函数图象的y值在x轴上方,故a﹣b+c>0,因此④正确.∴只有③④是正确的.故选:C.二、填空题(本大题共有4小题,每小题3分,共12分.不要求写出解答过程,请把答案直接填写在答题卷相应位置上)13.9的算术平方根是 3 .【解答】解:∵(±3)2=9,∴9的算术平方根是|±3|=3.故答案为:3.14.如图,直线l1∥l2,点A在直线l1上,点B在直线l2上,AB=BC,∠C=30°,∠1=80°,则∠2= 40° .【解答】解:如图,延长CB交l2于点D,∵AB=BC,∠C=30°,∴∠C=∠4=30°,∵l1∥l2,∠1=80°,∴∠1=∠3=80°,∵∠C+∠3+∠2+∠4=180°,即30°+80°+∠2+30°=180°,∴∠2=40°.故答案为:40°.15.如图,已知半圆的直径AB=4,点C在半圆上,以点A为圆心,AC为半径画弧交AB于点D,连接BC.若∠ABC=60°,则图中阴影部分的面积为 2﹣π .(结果不取近似值)【解答】解:∵AB是直径,第19页(共19页)
∴∠ACB=90°,∵∠ABC=60°,∴∠CAB=30°,∴BC=,AC=,∴,∵∠CAB=30°,∴扇形ACD的面积=,∴阴影部分的面积为.故答案为:.16.如图,在平面直角坐标系中,△ABC的顶点坐标分别为:A(﹣2,0),B(1,2),C(1,﹣2).已知N(﹣1,0),作点N关于点A的对称点N1,点N1关于点B的对称点N2,点N2关于点C的对称点N3,点N3关于点A的对称点N4,点N4关于点B的对称点N5,…,依此类推,则点N2020的坐标为 (﹣1,8) .【解答】解:由题意得,作出如下图形:N点坐标为(﹣1,0),N点关于A点对称的N1点的坐标为(﹣3,0),N1点关于B点对称的N2点的坐标为(5,4),N2点关于C点对称的N3点的坐标为(﹣3,8),N3点关于A点对称的N4点的坐标为(﹣1,8),N4点关于B点对称的N5点的坐标为(3,﹣4),N5点关于C点对称的N6点的坐标为(﹣1,0),此时刚好回到最开始的点N处,第19页(共19页)
∴其每6个点循环一次,∴2020÷6=336……4,即循环了336次后余下4,故N2020的坐标与N4点的坐标相同,其坐标为(﹣1,8).故答案为:(﹣1,8).三、解答题(本大题共有8个小题,共72分.请在答题卷指定区域内作答,解答时应写出文字说明、证明过程或演算步骤).17.(8分)先化简,再求值:(﹣)÷,其中m=.【解答】解:====;当时,原式=.18.(8分)如图,AE∥BF,BD平分∠ABC交AE于点D,点C在BF上且BC=AB,连接CD.求证:四边形ABCD是菱形.【解答】证明:∵AE∥BF,∴∠ADB=∠DBC,∵BD平分∠ABC,∴∠DBC=∠ABD,∴∠ADB=∠ABD,∴AB=AD,又∵AB=BC,∴AD=BC,∵AE∥BF,即AD∥BC,∴四边形ABCD为平行四边形,又∵AB=AD,∴四边形ABCD为菱形.19.(8分)某中学为了解九年级学生对新冠肺炎防控知识的掌握情况,从全校九年级学生中随机抽取部分学生进行调查.调查结果分为四类:A类﹣﹣非常了解;B类﹣﹣比较了解;C类﹣﹣般了解;D类﹣﹣不了解.现将调查结果绘制成如图不完整的统计图,请根据统计图中的信息解答下列问题:第19页(共19页)
(1)本次共调查了 50 名学生;(2)补全条形统计图;(3)D类所对应扇形的圆心角的大小为 36° ;(4)若该校九年级学生共有500名,根据以上抽样结果,估计该校九年级学生对新冠肺炎防控知识非常了解的约有 150 名.【解答】解:(1)本次共调查的学生数为:20÷40%=50(名).故答案为:50;(2)C类学生人数为:50﹣15﹣20﹣5=10(名),条形图如下:(3)D类所对应扇形的圆心角为:.故答案为:36°;(4)该校九年级学生对新冠肺炎防控知识非常了解的人数为:(名).故答案为:150.20.(8分)如图,一艘轮船以每小时30海里的速度自东向西航行,在A处测得小岛P位于其西北方向(北偏西45°方向),2小时后轮船到达B处,在B处测得小岛P位于其北偏东60°方向.求此时船与小岛P的距离(结果保留整数,参考数据:≈1.414,≈1.732).【解答】解:如图,过P作PH⊥AB,设PH=x,由题意得:AB=30×2=60,∠PBH=90°﹣60°=30°,∠PAH=90°﹣45°=45°,则△PHA是等腰直角三角形,∴AH=PH,在Rt△PHA中,设AH=PH=x,在Rt△PBH中,PB=2PH=2x,BH=AB﹣AH=60﹣x,第19页(共19页)
∴tan∠PBH=tan30°==,∴,解得:,∴PB=2x=≈44(海里),答:此时船与小岛P的距离约为44海里.21.(8分)如图,在平面直角坐标系中,直线y=ax﹣3a(a≠0)与x轴、y轴分别相交于A、B两点,与双曲线y=(x>0)的一个交点为C,且BC=AC.(1)求点A的坐标;(2)当S△AOC=3时,求a和k的值.【解答】解:(1)由题意得:令y=ax﹣3a(a≠0)中y=0,即ax﹣3a=0,解得x=3,∴点A的坐标为(3,0),故答案为(3,0).(2)过C点作y轴的垂线交y轴于M点,作x轴的垂线交x轴于N点,如下图所示:显然,CM∥OA,∴∠BCM=∠BAO,且∠ABO=∠CBO,∴△BCM∽△BAO,∴,即:,∴CM=1,又即:,第19页(共19页)
∴CN=2,∴C点的坐标为(1,2),故反比例函数的k=1×2=2,再将点C(1,2)代入一次函数y=ax﹣3a(a≠0)中,即2=a﹣3a,解得a=﹣1,故答案为:a=﹣1,k=2.22.(10分)某校足球队需购买A、B两种品牌的足球.已知A品牌足球的单价比B品牌足球的单价高20元,且用900元购买A品牌足球的数量用720元购买B品牌足球的数量相等.(1)求A、B两种品牌足球的单价;(2)若足球队计划购买A、B两种品牌的足球共90个,且A品牌足球的数量不小于B品牌足球数量的2倍,购买两种品牌足球的总费用不超过8500元.设购买A品牌足球m个,总费用为W元,则该队共有几种购买方案?采用哪一种购买方案可使总费用最低?最低费用是多少元?【解答】解:(1)设购买A品牌足球的单价为x元,则购买B品牌足球的单价为(x﹣20)元,根据题意,得,解得:x=100,经检验x=100是原方程的解,x﹣20=80,答:购买A品牌足球的单价为100元,则购买B品牌足球的单价为80元;(2)设购买m个A品牌足球,则购买(90﹣m)个B品牌足球,则W=100m+80(90﹣m)=20m+7200,∵A品牌足球的数量不小于B品牌足球数量的2倍,购买两种品牌足球的总费用不超过8500元,∴,解不等式组得:60≤m≤65,所以,m的值为:60,61,62,63,64,65,即该队共有6种购买方案,当m=60时,W最小,m=60时,W=20×60+7200=8400(元),答:该队共有6种购买方案,购买60个A品牌30个B品牌的总费用最低,最低费用是8400元.23.(10分)如图1,AB是⊙O的直径,直线AM与⊙O相切于点A,直线BN与⊙O相切于点B,点C(异于点A)在AM上,点D在⊙O上,且CD=CA,延长CD与BN相交于点E,连接AD并延长交BN于点F.(1)求证:CE是⊙O的切线;(2)求证:BE=EF;(3)如图2,连接EO并延长与⊙O分别相交于点G、H,连接BH.若AB=6,AC第19页(共19页)
=4,求tan∠BHE.【解答】解:(1)如图1中,连接OD,∵CD=CA,∴∠CAD=∠CDA,∵OA=OD∴∠OAD=∠ODA,∵直线AM与⊙O相切于点A,∴∠CAO=∠CAD+∠OAD=90°,∴∠ODC=∠CDA+∠ODA=90°,∴CE是⊙O的切线.(2)如图2中,连接BD,∵OD=OB,∴∠ODB=∠OBD,∵CE是⊙O的切线,BF是⊙O的切线,∴∠OBD=∠ODE=90°,∴∠EDB=∠EBD,∴ED=EB,∵AM⊥AB,BN⊥AB,∴AM∥BN,∴∠CAD=∠BFD,∵∠CAD=∠CDA=∠EDF,∴∠BFD=∠EDF,∴EF=ED,∴BE=EF.(3)如图2中,过E点作EL⊥AM于L,则四边形ABEL是矩形,设BE=x,则CL=4﹣x,CE=4+x,∴(4+x)2=(4﹣x)2+62,解得:x=,∴,∵∠BOE=2∠BHE,∴,解得:tan∠BHE=或﹣3(﹣3不合题意舍去),∴tan∠BHE=.补充方法:如图2中,作HJ⊥EB交EB的延长线于J.第19页(共19页)
∵tab∠BOE==,∴可以假设BE=3k,OB=4k,则OE=5k,∵OB∥HJ,∴==,∴==,∴HJ=k,EJ=k,∴BJ=EJ﹣BE=k﹣3k=k∴tan∠BHJ==,∵∠BHE=∠OBE=∠BHJ,∴tan∠BHE=.24.(12分)如图1,抛物线y=﹣x2+bx+c经过点C(6,0),顶点为B,对称轴x=2与x轴相交于点A,D为线段BC的中点.(1)求抛物线的解析式;(2)P为线段BC上任意一点,M为x轴上一动点,连接MP,以点M为中心,将△MPC逆时针旋转90°,记点P的对应点为E,点C的对应点为F.当直线EF与抛物线y=﹣x2+bx+c只有一个交点时,求点M的坐标.(3)△MPC在(2)的旋转变换下,若PC=(如图2).①求证:EA=ED.②当点E在(1)所求的抛物线上时,求线段CM的长.【解答】解:(1)∵点C(6,0)在抛物线上,第19页(共19页)
∴,得到6b+c=9,又∵对称轴x=2,∴,解得b=1,∴c=3,∴二次函数的解析式为;(2)当点M在点C的左侧时,如图2﹣1中:∵抛物线的解析式为,对称轴为x=2,C(6,0)∴点A(2,0),顶点B(2,4),∴AB=AC=4,∴△ABC是等腰直角三角形,∴∠1=45°;∵将△MPC逆时针旋转90°得到△MEF,∴FM=CM,∠2=∠1=45°,设点M的坐标为(m,0),∴点F(m,6﹣m),又∵∠2=45°,∴直线EF与x轴的夹角为45°,∴设直线EF的解析式为y=x+b,把点F(m,6﹣m)代入得:6﹣m=m+b,解得:b=6﹣2m,直线EF的解析式为y=x+6﹣2m,∵直线EF与抛物线只有一个交点,∴,整理得:,∴△=b2﹣4ac=0,解得m=,点M的坐标为(,0).第19页(共19页)
当点M在点C的右侧时,如下图:由图可知,直线EF与x轴的夹角仍是45°,因此直线EF与抛物线不可能只有一个交点.综上,点M的坐标为(,0).(3)①当点M在点C的左侧时,如下图,过点P作PG⊥x轴于点G,过点E作EH⊥x轴于点H,∵,由(2)知∠BCA=45°,∴PG=GC=1,∴点G(5,0),设点M的坐标为(m,0),∵将△MPC逆时针旋转90°得到△MEF,∴EM=PM,∵∠HEM+∠EMH=∠GMP+∠EMH=90°,∴∠HEM=∠GMP,在△EHM和△MGP中,,∴△EHM≌△MGP(AAS),∴EH=MG=5﹣m,HM=PG=1,∴点H(m﹣1,0),∴点E的坐标为(m﹣1,5﹣m);∴EA==,第19页(共19页)
又∵D为线段BC的中点,B(2,4),C(6,0),∴点D(4,2),∴ED==,∴EA=ED.当点M在点C的右侧时,如下图:同理,点E的坐标仍为(m﹣1,5﹣m),因此EA=ED.②当点E在(1)所求的抛物线上时,把E(m﹣1,5﹣m)代入,整理得:m2﹣10m+13=0,解得:m=或m=,∴CM=或CM=.声明:试题解析著作权属菁优网所有,未经书面同意,不得复制发布日期:2020/7/309:40:49;用户:柯瑞;邮箱:ainixiaoke00@163.com;学号:500557第19页(共19页)