2020年新疆生产建设兵团中考数学试卷
加入VIP免费下载

2020年新疆生产建设兵团中考数学试卷

ID:895913

大小:438 B

页数:14页

时间:2022-02-26

加入VIP免费下载
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天资源网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:403074932
资料简介
2020年新疆生产建设兵团中考数学试卷一、单项选择题(本大题共9小题,每小题5分,共45分.请按答题卷中的要求作答)1.下列各数中,是负数的为(  )A.﹣1B.0C.0.2D.2.如图所示,该几何体的俯视图是(  )A.B.C.D.3.下列运算正确的是(  )A.x2•x3=x6B.x6÷x3=x3C.x3+x3=2x6D.(﹣2x)3=﹣6x34.实数a,b在数轴上的位置如图所示,下列结论中正确的是(  )A.a>bB.|a|>|b|C.﹣a<bD.a+b>05.下列一元二次方程中,有两个不相等实数根的是(  )A.x2﹣x+=0B.x2+2x+4=0C.x2﹣x+2=0D.x2﹣2x=06.不等式组的解集是(  )A.0<x≤2B.0<x≤6C.x>0D.x≤27.四张看上去无差别的卡片上分别印有正方形、正五边形、正六边形和圆,现将印有图形的面朝下,混合均匀后从中随机抽取两张,则抽到的卡片上印有的图形都是中心对称图形的概率为(  )A.B.C.D.8.二次函数y=ax2+bx+c的图象如图所示,则一次函数y=ax+b和反比例函数y=在同一平面直角坐标系中的图象可能是(  )A.B.C.D.9.如图,在△ABC中,∠A=90°,D是AB的中点,过点D作BC的平行线交AC于点E,作BC的垂线交BC于点F,若AB=CE,且△DFE的面积为1,则BC的长为(  )A.2B.5C.4D.10二、填空题(本大题共6小题,每小题5分,共30分)第14页(共14页) 10.如图,若AB∥CD,∠A=110°,则∠1=  °.11.分解因式:am2﹣an2=  .12.表中记录了某种苹果树苗在一定条件下移植成活的情况:移植的棵数n200500800200012000成活的棵数m187446730179010836成活的频率0.9350.8920.9130.8950.903由此估计这种苹果树苗移植成活的概率约为  .(精确到0.1)13.如图,在x轴,y轴上分别截取OA,OB,使OA=OB,再分别以点A,B为圆心,以大于AB长为半径画弧,两弧交于点P.若点P的坐标为(a,2a﹣3),则a的值为  .14.如图,⊙O的半径是2,扇形BAC的圆心角为60°.若将扇形BAC剪下围成一个圆锥,则此圆锥的底面圆的半径为  .15.如图,在△ABC中,∠A=90°,∠B=60°,AB=2,若D是BC边上的动点,则2AD+DC的最小值为  .三、解答题(本大题共8小题,共75分)16.(6分)计算:(﹣1)2+|﹣|+(π﹣3)0﹣.17.(7分)先化简,再求值:(x﹣2)2﹣4x(x﹣1)+(2x+1)(2x﹣1),其中x=﹣.18.(8分)如图,四边形ABCD是平行四边形,DE∥BF,且分别交对角线AC于点E,F,连接BE,DF.(1)求证:AE=CF;(2)若BE=DE,求证:四边形EBFD为菱形.19.(10分)为了解某校九年级学生的体质健康状况,随机抽取了该校九年级学生的10%进行测试,将这些学生的测试成绩(x)分为四个等级:优秀85≤x≤100;良好75≤x<85;及格60≤x<75;不及格0≤x<60,并绘制成如图两幅统计图.第14页(共14页) 根据以上信息,解答下列问题:(1)在抽取的学生中不及格人数所占的百分比是  ;(2)计算所抽取学生测试成绩的平均分;(3)若不及格学生的人数为2人,请估算出该校九年级学生中优秀等级的人数.20.(9分)如图,为测量建筑物CD的高度,在A点测得建筑物顶部D点的仰角为22°,再向建筑物CD前进30米到达B点,测得建筑物顶部D点的仰角为58°(A,B,C三点在一条直线上),求建筑物CD的高度.(结果保留整数.参考数据:sin22°≈0.37,cos22°≈0.93,tan22°≈0.40,sin58°≈0.85,cos58°≈0.53,tan58°≈1.60)21.(11分)某超市销售A、B两款保温杯,已知B款保温杯的销售单价比A款保温杯多10元,用480元购买B款保温杯的数量与用360元购买A款保温杯的数量相同.(1)A、B两款保温杯的销售单价各是多少元?(2)由于需求量大,A、B两款保温杯很快售完,该超市计划再次购进这两款保温杯共120个,且A款保温杯的数量不少于B款保温杯数量的两倍.若A款保温杯的销售单价不变,B款保温杯的销售单价降低10%,两款保温杯的进价每个均为20元,应如何进货才能使这批保温杯的销售利润最大,最大利润是多少元?22.(11分)如图,在⊙O中,AB为⊙O的直径,C为⊙O上一点,P是的中点,过点P作AC的垂线,交AC的延长线于点D.(1)求证:DP是⊙O的切线;(2)若AC=5,sin∠APC=,求AP的长.23.(13分)如图,在平面直角坐标系中,点O为坐标原点,抛物线y=ax2+bx+c的顶点是A(1,3),将OA绕点O顺时针旋转90°后得到OB,点B恰好在抛物线上,OB与抛物线的对称轴交于点C.(1)求抛物线的解析式;(2)P是线段AC上一动点,且不与点A,C重合,过点P作平行于x轴的直线,与△OAB的边分别交于M,N两点,将△AMN以直线MN为对称轴翻折,得到△A′MN,设点P第14页(共14页) 的纵坐标为m.①当△A′MN在△OAB内部时,求m的取值范围;②是否存在点P,使S△A′MN=S△OA′B,若存在,求出满足条件m的值;若不存在,请说明理由.第14页(共14页) 2020年新疆生产建设兵团中考数学试卷参考答案与试题解析一、单项选择题(本大题共9小题,每小题5分,共45分.请按答题卷中的要求作答)1.下列各数中,是负数的为(  )A.﹣1B.0C.0.2D.【解答】解:﹣1是负数;0既不是正数也不是负数;0.2是正数;是正数.故选:A.2.如图所示,该几何体的俯视图是(  )A.B.C.D.【解答】解:从上面看是四个正方形,符合题意的是C,故选:C.3.下列运算正确的是(  )A.x2•x3=x6B.x6÷x3=x3C.x3+x3=2x6D.(﹣2x)3=﹣6x3【解答】解:A、x2•x3=x5,选项错误.不符合题意;B、x6÷x3=x3,选项正确,符合题意;C、x3+x3=2x3,选项错误,不符合题意;D、(﹣2x)3=﹣8x3,选项错误,不符合题意;故选:B.4.实数a,b在数轴上的位置如图所示,下列结论中正确的是(  )A.a>bB.|a|>|b|C.﹣a<bD.a+b>0【解答】解:如图所示:A、a<b,故此选项错误;B、|a|>|b|,正确;C、﹣a>b,故此选项错误;D、a+b<0,故此选项错误;故选:B.5.下列一元二次方程中,有两个不相等实数根的是(  )A.x2﹣x+=0B.x2+2x+4=0C.x2﹣x+2=0D.x2﹣2x=0【解答】解:A.此方程判别式△=(﹣1)2﹣4×1×=0,方程有两个相等的实数根,不符合题意;B.此方程判别式△=22﹣4×1×4=﹣12<0,方程没有实数根,不符合题意;C.此方程判别式△=(﹣1)2﹣4×1×2=﹣7<0,方程没有实数根,不符合题意;D.此方程判别式△=(﹣2)2﹣4×1×0=4>0,方程有两个不相等的实数根,符合题意;故选:D.6.不等式组的解集是(  )A.0<x≤2B.0<x≤6C.x>0D.x≤2第14页(共14页) 【解答】解:,解不等式①,得:x≤2,解不等式②,得:x>0,则不等式组的解集为0<x≤2,故选:A.7.四张看上去无差别的卡片上分别印有正方形、正五边形、正六边形和圆,现将印有图形的面朝下,混合均匀后从中随机抽取两张,则抽到的卡片上印有的图形都是中心对称图形的概率为(  )A.B.C.D.【解答】解:分别用A、B、C、D表示正方形、正五边形、正六边形和圆,画树状图得:∵共有12种等可能的结果,抽到卡片上印有的图案都是中心对称图形的有6种情况,∴抽到卡片上印有的图案都是中心对称图形的概率为:=.故选:C.8.二次函数y=ax2+bx+c的图象如图所示,则一次函数y=ax+b和反比例函数y=在同一平面直角坐标系中的图象可能是(  )A.B.C.D.【解答】解:因为二次函数y=ax2﹣bx+c的图象开口向上,得出a>0,与y轴交点在y轴的正半轴,得出c>0,利用对称轴x=﹣>0,得出b<0,所以一次函数y=ax+b经过一、三、四象限,反比例函数y=经过一、三象限,第14页(共14页) 故选:D.9.如图,在△ABC中,∠A=90°,D是AB的中点,过点D作BC的平行线交AC于点E,作BC的垂线交BC于点F,若AB=CE,且△DFE的面积为1,则BC的长为(  )A.2B.5C.4D.10【解答】解:过A作AH⊥BC于H,∵D是AB的中点,∴AD=BD,∵DE∥BC,∴AE=CE,∴DE=BC,∵DF⊥BC,∴DF∥AH,DF⊥DE,∴BF=HF,∴DF=AH,∵△DFE的面积为1,∴DE•DF=1,∴DE•DF=2,∴BC•AH=2DE•2DF=4×2=8,∴AB•AC=8,∵AB=CE,∴AB=AE=CE=AC,∴AB•2AB=8,∴AB=2(负值舍去),∴AC=4,∴BC==2.故选:A.二、填空题(本大题共6小题,每小题5分,共30分)10.如图,若AB∥CD,∠A=110°,则∠1= 70 °.【解答】解:∵AB∥CD,∴∠2=∠A=110°.又∵∠1+∠2=180°,第14页(共14页) ∴∠1=180°﹣∠2=180°﹣110°=70°.故答案为:70.11.分解因式:am2﹣an2= a(m+n)(m﹣n) .【解答】解:原式=a(m2﹣n2)=a(m+n)(m﹣n),故答案为:a(m+n)(m﹣n)12.表中记录了某种苹果树苗在一定条件下移植成活的情况:移植的棵数n200500800200012000成活的棵数m187446730179010836成活的频率0.9350.8920.9130.8950.903由此估计这种苹果树苗移植成活的概率约为 0.9 .(精确到0.1)【解答】解:根据表格数据可知:苹果树苗移植成活的频率近似值为0.9,所以估计这种苹果树苗移植成活的概率约为0.9.故答案为:0.9.13.如图,在x轴,y轴上分别截取OA,OB,使OA=OB,再分别以点A,B为圆心,以大于AB长为半径画弧,两弧交于点P.若点P的坐标为(a,2a﹣3),则a的值为 3 .【解答】解:∵OA=OB,分别以点A,B为圆心,以大于AB长为半径画弧,两弧交于点P,∴点P在∠BOA的角平分线上,∴点P到x轴和y轴的距离相等,又∵点P在第一象限,点P的坐标为(a,2a﹣3),∴a=2a﹣3,∴a=3.故答案为:3.14.如图,⊙O的半径是2,扇形BAC的圆心角为60°.若将扇形BAC剪下围成一个圆锥,则此圆锥的底面圆的半径为  .第14页(共14页) 【解答】解:连接OA,作OD⊥AB于点D.在直角△OAD中,OA=2,∠OAD=∠BAC=30°,则AD=OA•cos30°=.则AB=2AD=2,则扇形的弧长是:=π,设底面圆的半径是r,则2π×r=π,解得:r=.故答案为:.15.如图,在△ABC中,∠A=90°,∠B=60°,AB=2,若D是BC边上的动点,则2AD+DC的最小值为 6 .【解答】解:如图所示,作点A关于BC的对称点A',连接AA',A'D,过D作DE⊥AC于E,∵△ABC中,∠BAC=90°,∠B=60°,AB=2,∴BH=1,AH=,AA'=2,∠C=30°,∴Rt△CDE中,DE=CD,即2DE=CD,∵A与A'关于BC对称,∴AD=A'D,∴AD+DE=A'D+DE,∴当A',D,E在同一直线上时,AD+DE的最小值等于A'E的长,此时,Rt△AA'E中,A'E=sin60°×AA'=×2=3,∴AD+DE的最小值为3,即2AD+CD的最小值为6,故答案为:6.第14页(共14页) 三、解答题(本大题共8小题,共75分)16.(6分)计算:(﹣1)2+|﹣|+(π﹣3)0﹣.【解答】解:(﹣1)2+|﹣|+(π﹣3)0﹣=1++1﹣2=.17.(7分)先化简,再求值:(x﹣2)2﹣4x(x﹣1)+(2x+1)(2x﹣1),其中x=﹣.【解答】解:(x﹣2)2﹣4x(x﹣1)+(2x+1)(2x﹣1)=x2﹣4x+4﹣4x2+4x+4x2﹣1=x2+3,当x=﹣时,原式=(﹣)2+3=5.18.(8分)如图,四边形ABCD是平行四边形,DE∥BF,且分别交对角线AC于点E,F,连接BE,DF.(1)求证:AE=CF;(2)若BE=DE,求证:四边形EBFD为菱形.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AD=CB,AD∥CB,∴∠DAE=∠BCF,∵DE∥BF,∴∠DEF=∠BFE,∴∠AED=∠CFB,在△ADE和△CBF中,,∴△ADE≌△CBF(AAS),∴AE=CF;(2)证明:由(1)知△ADE≌△CBF,则DE=BF,又∵DE∥BF,∴四边形EBFD是平行四边形,∵BE=DE,∴四边形EBFD为菱形.19.(10分)为了解某校九年级学生的体质健康状况,随机抽取了该校九年级学生的10%进行测试,将这些学生的测试成绩(x)分为四个等级:优秀85≤x≤100;良好75≤x<85;及格60≤x<75;不及格0≤x<60,并绘制成如图两幅统计图.第14页(共14页) 根据以上信息,解答下列问题:(1)在抽取的学生中不及格人数所占的百分比是 5% ;(2)计算所抽取学生测试成绩的平均分;(3)若不及格学生的人数为2人,请估算出该校九年级学生中优秀等级的人数.【解答】解:(1)在抽取的学生中不及格人数所占的百分比=1﹣20%﹣25%﹣50%=5%,故答案为5%.(2)所抽取学生测试成绩的平均分==79.8(分).(3)由题意总人数=2÷5%=40(人),40×50%=20,20÷10%=200(人)答:该校九年级学生中优秀等级的人数约为200人.20.(9分)如图,为测量建筑物CD的高度,在A点测得建筑物顶部D点的仰角为22°,再向建筑物CD前进30米到达B点,测得建筑物顶部D点的仰角为58°(A,B,C三点在一条直线上),求建筑物CD的高度.(结果保留整数.参考数据:sin22°≈0.37,cos22°≈0.93,tan22°≈0.40,sin58°≈0.85,cos58°≈0.53,tan58°≈1.60)【解答】解:在Rt△BDC中,∵tan∠DBC=,∴1.60=,∴BC=,在Rt△ACD中,∵tan∠DAC=,∴0.40=,∴AC=,第14页(共14页) ∴AB=AC﹣BC=﹣=30,解得:CD=16(米),答:建筑物CD的高度为16米.21.(11分)某超市销售A、B两款保温杯,已知B款保温杯的销售单价比A款保温杯多10元,用480元购买B款保温杯的数量与用360元购买A款保温杯的数量相同.(1)A、B两款保温杯的销售单价各是多少元?(2)由于需求量大,A、B两款保温杯很快售完,该超市计划再次购进这两款保温杯共120个,且A款保温杯的数量不少于B款保温杯数量的两倍.若A款保温杯的销售单价不变,B款保温杯的销售单价降低10%,两款保温杯的进价每个均为20元,应如何进货才能使这批保温杯的销售利润最大,最大利润是多少元?【解答】解:(1)设A款保温杯的单价是a元,则B款保温杯的单价是(a+10)元,,解得,a=30,经检验,a=30是原分式方程的解,则a+10=40,答:A、B两款保温杯的销售单价分别是30元、40元;(2)设购买A款保温杯x个,则购买B款保温杯(120﹣x)个,利润为w元,w=(30﹣20)x+[40×(1﹣10%)﹣20](120﹣x)=﹣6x+1920,∵A款保温杯的数量不少于B款保温杯数量的两倍,∴x≥2(120﹣x),解得,x≥80,∴当x=80时,w取得最大值,此时w=1440,120﹣x=40,答:当购买A款保温杯80个,B款保温杯40个时,能使这批保温杯的销售利润最大,最大利润是1440元.22.(11分)如图,在⊙O中,AB为⊙O的直径,C为⊙O上一点,P是的中点,过点P作AC的垂线,交AC的延长线于点D.(1)求证:DP是⊙O的切线;(2)若AC=5,sin∠APC=,求AP的长.【解答】(1)证明:∵P是的中点,∴=,∴∠PAD=∠PAB,∵OA=OP,∴∠APO=∠PAO,∴∠DAP=∠APO,∴AD∥OP,∵PD⊥AD,∴PD⊥OP,∴DP是⊙O的切线;(2)解:连接BC交OP于E,∵AB为⊙O的直径,第14页(共14页) ∴∠ACB=90°,∵P是的中点,∴OP⊥BC,CE=BE,∴四边形CDPE是矩形,∴CD=PE,PD=CE,∵∠APC=∠B,∴sin∠APC=sin∠APC==,∵AC=5,∴AB=13,∴BC=12,∴PD=CE=BE=6,∵OE=AC=,OP=,∴CD=PE=﹣=4,∴AD=9,∴AP===3.23.(13分)如图,在平面直角坐标系中,点O为坐标原点,抛物线y=ax2+bx+c的顶点是A(1,3),将OA绕点O顺时针旋转90°后得到OB,点B恰好在抛物线上,OB与抛物线的对称轴交于点C.(1)求抛物线的解析式;(2)P是线段AC上一动点,且不与点A,C重合,过点P作平行于x轴的直线,与△OAB的边分别交于M,N两点,将△AMN以直线MN为对称轴翻折,得到△A′MN,设点P的纵坐标为m.①当△A′MN在△OAB内部时,求m的取值范围;②是否存在点P,使S△A′MN=S△OA′B,若存在,求出满足条件m的值;若不存在,请说明理由.【解答】解:(1)∵抛物线y=ax2+bx+c的顶点是A(1,3),∴抛物线的解析式为y=a(x﹣1)2+3,∴OA绕点O顺时针旋转90°后得到OB,∴B(3,﹣1),第14页(共14页) 把B(3,﹣1)代入y=a(x﹣1)2+3可得a=﹣1,∴抛物线的解析式为y=﹣(x﹣1)2+3,即y=﹣x2+2x+2,(2)①如图1中,∵B(3,﹣1),∴直线OB的解析式为y=﹣x,∵A(1,3),∴C(1,﹣),∵P(1,m),AP=PA′,∴A′(1,2m﹣3),由题意3>2m﹣3>﹣,∴3>m>.②∵直线OA的解析式为y=3x,直线AB的解析式为y=﹣2x+5,∵P(1,m),∴M(,m),N(,m),∴MN=﹣=,∵S△A′MN=S△OA′B,∴•(m﹣2m+3)•=××|2m﹣3+|×3,整理得m2﹣6m+9=|6m﹣8|解得m=6+(舍弃)或6﹣,∴满足条件的m的值为6﹣.声明:试题解析著作权属菁优网所有,未经书面同意,不得复制发布日期:2020/6/3010:17:01;用户:柯瑞;邮箱:ainixiaoke00@163.com;学号:500557第14页(共14页)

10000+的老师在这里下载备课资料