2020年四川省达州市中考数学试卷一、单项选择题(每小题3分,共30分)1.(3分)人类与病毒的斗争是长期的,不能松懈.据中央电视台报道,截止北京时间2020年6月30日凌晨,全球新冠肺炎患者确诊病例达到1002万.1002万用科学记数法表示,正确的是( )A.1.002×107B.1.002×106C.1002×104D.1.002×102万2.(3分)下列各数中,比3大比4小的无理数是( )A.3.14B.C.D.3.(3分)下列正方体的展开图上每个面上都有一个汉字.其中,手的对面是口的是( )A.B.C.D.4.(3分)下列说法正确的是( )A.为了解全国中小学生的心理健康状况,应采用普查B.确定事件一定会发生C.某校6位同学在新冠肺炎防疫知识竞赛中成绩分别为98、97、99、99、98、96,那么这组数据的众数为98D.数据6、5、8、7、2的中位数是65.(3分)图2是图1中长方体的三视图,用S表示面积,S主=x2+3x,S左=x2+x,则S俯=( )第31页(共31页)
A.x2+3x+2B.x2+2x+1C.x2+4x+3D.2x2+4x6.(3分)如图,正方体的每条棱上放置相同数目的小球,设每条棱上的小球数为m,下列代数式表示正方体上小球总数,则表达错误的是( )A.12(m﹣1)B.4m+8(m﹣2)C.12(m﹣2)+8D.12m﹣167.(3分)中国奇书《易经》中记载,远古时期,人们通过在绳子上打结来计数,即“结绳计数”.如图,一位母亲在从右到左依次排列的绳子上打结,满5进1,用来记录孩子自出生后的天数.由图可知,孩子自出生后的天数是( )A.10B.89C.165D.2948.(3分)如图,在半径为5的⊙O中,将劣弧AB沿弦AB翻折,使折叠后的恰好与OA、OB相切,则劣弧AB的长为( )A.πB.πC.πD.π9.(3分)如图,直线y1=kx与抛物线y2=ax2+bx+c交于A、B两点,则y=ax2+(b﹣k)x+c的图象可能是( )第31页(共31页)
A.B.C.D.10.(3分)如图,∠BOD=45°,BO=DO,点A在OB上,四边形ABCD是矩形,连接AC、BD交于点E,连接OE交AD于点F.下列4个判断:①OE平分∠BOD;②OF=BD;③DF=AF;④若点G是线段OF的中点,则△AEG为等腰直角三角形.正确判断的个数是( )A.4B.3C.2D.1二、填空题(每小题3分,共18分)11.(3分)2019年是中华人民共和国成立70周年,天安门广场举行了盛大的国庆阅兵式和群众游行活动.其中,群众游行队伍以“同心共筑中国梦”为主题,包含有“建国创业”“改革开放”“伟大复兴”三个部分,某同学要统计本班学生最喜欢哪个部分,制作扇形统计图.以下是打乱了的统计步骤:①绘制扇形统计图②收集三个部分本班学生喜欢的人数③计算扇形统计图中三个部分所占的百分比其中正确的统计顺序是 .第31页(共31页)
12.(3分)如图,点P(﹣2,1)与点Q(a,b)关于直线1(y=﹣1)对称,则a+b= .13.(3分)小明为测量校园里一颗大树AB的高度,在树底部B所在的水平面内,将测角仪CD竖直放在与B相距8m的位置,在D处测得树顶A的仰角为52°.若测角仪的高度是1m,则大树AB的高度约为 .(结果精确到lm.参考数据:sin52°≈0.78,cos52°≈0.61,tan52°≈1.28)14.(3分)如图,点A、B在反比函数y=的图象上,A、B的纵坐标分别是3和6,连接OA、OB,则△OAB的面积是 .15.(3分)已知△ABC的三边a、b、c满足b+|c﹣3|+a2﹣8a=4﹣19,则△ABC的内切圆半径= .16.(3分)已知k为正整数,无论k取何值,直线11:y=kx+k+1与直线12:y=(k+1)x+k+2都交于一个固定的点,这个点的坐标是 ;记直线11和12与x轴围成的三角形面积为Sk,则S1= ,S1+S2+S3+…+S100的值为 .三、解答题:解答时应写出必要的文字说明、证明过程或演算步骤(共72分)17.(5分)计算:﹣22+()﹣2+(π﹣)0+.18.(7分)求代数式(﹣x﹣1)÷的值,其中x=+1.19.(7分)如图,点O在∠ABC的边BC上,以OB为半径作⊙O,∠ABC的平分线BM交第31页(共31页)
⊙O于点D,过点D作DE⊥BA于点E.(1)尺规作图(不写作法,保留作图痕迹),补全图形;(2)判断⊙O与DE交点的个数,并说明理由.20.(7分)争创全国文明城市,从我做起.尚理中学在八年级开设了文明礼仪校本课程,为了解学生的学习情况,随机抽取了20名学生的测试成绩,分数如下:94839086948896100898294828489889398949392整理上面的数据,得到频数分布表和扇形统计图:等级成绩/分频数A95≤x≤100aB90≤x<958C85≤x<905D80≤x<854根据以上信息,解答下列问题.(1)填空:a= ,b= ;(2)若成绩不低于90分为优秀,估计该校1200名八年级学生中,达到优秀等级的人数;(3)已知A等级中有2名女生,现从A等级中随机抽取2名同学,试用列表或画树状图的方法求出恰好抽到一男一女的概率.21.(8分)如图,△ABC中,BC=2AB,D、E分别是边BC、AC的中点.将△CDE绕点E旋转180度,得△AFE.第31页(共31页)
(1)判断四边形ABDF的形状,并证明;(2)已知AB=3,AD+BF=8,求四边形ABDF的面积S.22.(8分)某家具商场计划购进某种餐桌、餐椅进行销售,有关信息如下表:原进价(元/张)零售价(元/张)成套售价(元/套)餐桌a380940餐椅a﹣140160已知用600元购进的餐椅数量与用1300元购进的餐桌数量相同.(1)求表中a的值;(2)该商场计划购进餐椅的数量是餐桌数量的5倍还多20张,且餐桌和餐椅的总数量不超过200张.若将一半的餐桌成套(一张餐桌和四张餐椅配成一套)销售,其余餐桌、餐椅以零售方式销售,请问怎样进货,才能获得最大利润?最大利润是多少?23.(8分)如图,在梯形ABCD中,AB∥CD,∠B=90°,AB=6cm,CD=2cm.P为线段BC上的一动点,且和B、C不重合,连接PA,过点P作PE⊥PA交射线CD于点E.聪聪根据学习函数的经验,对这个问题进行了研究:(1)通过推理,他发现△ABP∽△PCE,请你帮他完成证明.(2)利用几何画板,他改变BC的长度,运动点P,得到不同位置时,CE、BP的长度的对应值:当BC=6cm时,得表1:BP/cm…12345…CE/cm…0.831.331.501.330.83…当BC=8cm时,得表2:BP/cm…1234567…CE/cm…1.172.002.502.672.502.001.17…这说明,点P在线段BC上运动时,要保证点E总在线段CD上,BC的长度应有一定的限制.第31页(共31页)
①填空:根据函数的定义,我们可以确定,在BP和CE的长度这两个变量中, 的长度为自变量, 的长度为因变量;②设BC=mcm,当点P在线段BC上运动时,点E总在线段CD上,求m的取值范围.24.(10分)(1)[阅读与证明]如图1,在正△ABC的外角∠CAH内引射线AM,作点C关于AM的对称点E(点E在∠CAH内),连接BE,BE、CE分别交AM于点F、G.①完成证明:∵点E是点C关于AM的对称点,∴∠AGE=90°,AE=AC,∠1=∠2.∵正△ABC中,∠BAC=60°,AB=AC,∴AE=AB,得∠3=∠4.在△ABE中,∠1+∠2+60°+∠3+∠4=180°,∴∠1+∠3= °.在△AEG中,∠FEG+∠3+∠1=90°,∴∠FEG= °.②求证:BF=AF+2FG.(2)[类比与探究]把(1)中的“正△ABC”改为“正方形ABDC”,其余条件不变,如图2.类比探究,可得:①∠FEG= °;②线段BF、AF、FG之间存在数量关系 .(3)[归纳与拓展]如图3,点A在射线BH上,AB=AC,∠BAC=α(0°<α<180°),在∠CAH内引射线AM,作点C关于AM的对称点E(点E在∠CAH内),连接BE,BE、CE分别交AM于点F、G.则线段BF、AF、GF之间的数量关系为 .第31页(共31页)
25.(12分)如图,在平面直角坐标系xOy中,已知直线y=x﹣2与x轴交于点A,与y轴交于点B,过A、B两点的抛物线y=ax2+bx+c与x轴交于另一点C(﹣1,0).(1)求抛物线的解析式;(2)在抛物线上是否存在一点P,使S△PAB=S△OAB?若存在,请求出点P的坐标,若不存在,请说明理由;(3)点M为直线AB下方抛物线上一点,点N为y轴上一点,当△MAB的面积最大时,求MN+ON的最小值.第31页(共31页)
2020年四川省达州市中考数学试卷参考答案与试题解析一、单项选择题(每小题3分,共30分)1.(3分)人类与病毒的斗争是长期的,不能松懈.据中央电视台报道,截止北京时间2020年6月30日凌晨,全球新冠肺炎患者确诊病例达到1002万.1002万用科学记数法表示,正确的是( )A.1.002×107B.1.002×106C.1002×104D.1.002×102万【解答】解:1002万用科学记数法表示为1.002×107,故选:A.2.(3分)下列各数中,比3大比4小的无理数是( )A.3.14B.C.D.【解答】解:3=,4=,A、3.14是有理数,故此选项不合题意;B、是有理数,故此选项不符合题意;C、是比3大比4小的无理数,故此选项符合题意;D、比4大的无理数,故此选项不合题意;故选:C.3.(3分)下列正方体的展开图上每个面上都有一个汉字.其中,手的对面是口的是( )A.B.C.D.【解答】解:A、手的对面是勤,不符合题意;B、手的对面是口,符合题意;第31页(共31页)
C、手的对面是罩,不符合题意;D、手的对面是罩,不符合题意;故选:B.4.(3分)下列说法正确的是( )A.为了解全国中小学生的心理健康状况,应采用普查B.确定事件一定会发生C.某校6位同学在新冠肺炎防疫知识竞赛中成绩分别为98、97、99、99、98、96,那么这组数据的众数为98D.数据6、5、8、7、2的中位数是6【解答】解:A.为了解全国中小学生的心理健康状况,应采用抽样调查,此选项错误;B.确定事件一定会发生,或一定不会发生,此选项错误;C.某校6位同学在新冠肺炎防疫知识竞赛中成绩分别为98、97、99、99、98、96,那么这组数据的众数为98和99,此选项错误;D.数据6、5、8、7、2的中位数是6,此选项正确;故选:D.5.(3分)图2是图1中长方体的三视图,用S表示面积,S主=x2+3x,S左=x2+x,则S俯=( )A.x2+3x+2B.x2+2x+1C.x2+4x+3D.2x2+4x【解答】解:∵S主=x2+3x=x(x+3),S左=x2+x=x(x+1),∴俯视图的长为x+3,宽为x+1,则俯视图的面积S俯=(x+3)(x+1)=x2+4x+3,故选:C.6.(3分)如图,正方体的每条棱上放置相同数目的小球,设每条棱上的小球数为m,下列代数式表示正方体上小球总数,则表达错误的是( )第31页(共31页)
A.12(m﹣1)B.4m+8(m﹣2)C.12(m﹣2)+8D.12m﹣16【解答】解:由题意得,当每条棱上的小球数为m时,正方体上的所有小球数为12m﹣8×2=12m﹣16.而12(m﹣1)=12m﹣12≠12m﹣16,4m+8(m﹣2)=12m﹣16,12(m﹣2)+8=12m﹣16,所以A选项表达错误,符合题意;B、C、D选项表达正确,不符合题意;故选:A.7.(3分)中国奇书《易经》中记载,远古时期,人们通过在绳子上打结来计数,即“结绳计数”.如图,一位母亲在从右到左依次排列的绳子上打结,满5进1,用来记录孩子自出生后的天数.由图可知,孩子自出生后的天数是( )A.10B.89C.165D.294【解答】解:2×53+1×52+3×51+4×50=294,故选:D.8.(3分)如图,在半径为5的⊙O中,将劣弧AB沿弦AB翻折,使折叠后的恰好与OA、OB相切,则劣弧AB的长为( )A.πB.πC.πD.π【解答】解:如图,作O点关于AB的对称点O′,连接O′A、O′B,∵OA=OB=O′A=O′B,第31页(共31页)
∴四边形OAO′B为菱形,∵折叠后的与OA、OB相切,∴O′A⊥OA,O′B⊥OB,∴四边形OAO′B为正方形,∴∠AOB=90°,∴劣弧AB的长==π.故选:B.9.(3分)如图,直线y1=kx与抛物线y2=ax2+bx+c交于A、B两点,则y=ax2+(b﹣k)x+c的图象可能是( )A.B.C.D.【解答】解:设y=y2﹣y1,∵y1=kx,y2=ax2+bx+c,∴y=ax2+(b﹣k)x+c,由图象可知,在点A和点B之间,y>0,在点A的左侧或点B的右侧,y<0,故选项B符合题意,选项A、C、D不符合题意;第31页(共31页)
故选:B.10.(3分)如图,∠BOD=45°,BO=DO,点A在OB上,四边形ABCD是矩形,连接AC、BD交于点E,连接OE交AD于点F.下列4个判断:①OE平分∠BOD;②OF=BD;③DF=AF;④若点G是线段OF的中点,则△AEG为等腰直角三角形.正确判断的个数是( )A.4B.3C.2D.1【解答】解:①∵四边形ABCD是矩形,∴EB=ED,∵BO=DO,∴OE平分∠BOD,故①正确;②∵四边形ABCD是矩形,∴∠OAD=∠BAD=90°,∴∠ABD+∠ADB=90°,∵OB=OD,BE=DE,∴OE⊥BD,∴∠BOE+∠OBE=90°,∴∠BOE=∠BDA,∵∠BOD=45°,∠OAD=90°,∴∠ADO=45°,∴AO=AD,∴△AOF≌△ABD(ASA),∴OF=BD,故②正确;③∵△AOF≌△ABD,∴AF=AB,第31页(共31页)
连接BF,如图1,∴BF=,∵BE=DE,OE⊥BD,∴DF=BF,∴DF=,故③正确;④根据题意作出图形,如图2,∵G是OF的中点,∠OAF=90°,∴AG=OG,∴∠AOG=∠OAG,∵∠AOD=45°,OE平分∠AOD,∴∠AOG=∠OAG=22.5°,∴∠FAG=67.5°,∠ADB=∠AOF=22.5°,∵四边形ABCD是矩形,∴EA=ED,∴∠EAD=∠EDA=22.5°,∴∠EAG=90°,∵∠AGE=∠AOG+∠OAG=45°,∴∠AEG=45°,∴AE=AG,∴△AEG为等腰直角三角形,第31页(共31页)
故④正确;故选:D.二、填空题(每小题3分,共18分)11.(3分)2019年是中华人民共和国成立70周年,天安门广场举行了盛大的国庆阅兵式和群众游行活动.其中,群众游行队伍以“同心共筑中国梦”为主题,包含有“建国创业”“改革开放”“伟大复兴”三个部分,某同学要统计本班学生最喜欢哪个部分,制作扇形统计图.以下是打乱了的统计步骤:①绘制扇形统计图②收集三个部分本班学生喜欢的人数③计算扇形统计图中三个部分所占的百分比其中正确的统计顺序是 ②③① .【解答】解:正确的统计顺序是:②收集三个部分本班学生喜欢的人数;③计算扇形统计图中三个部分所占的百分比;①绘制扇形统计图;故答案为:②③①.12.(3分)如图,点P(﹣2,1)与点Q(a,b)关于直线1(y=﹣1)对称,则a+b= ﹣5 .【解答】解:∵点P(﹣2,1)与点Q(a,b)关于直线1(y=﹣1)对称,∴a=﹣2,b=﹣3,∴a+b=﹣2﹣3=﹣5,故答案为﹣5.13.(3分)小明为测量校园里一颗大树AB的高度,在树底部B所在的水平面内,将测角仪CD竖直放在与B相距8m的位置,在D处测得树顶A的仰角为52°.若测角仪的高度是1m,则大树AB的高度约为 11 .(结果精确到lm.参考数据:sin52°≈0.78,cos52°≈0.61,tan52°≈1.28)第31页(共31页)
【解答】解:如图,过点D作DE⊥AB,垂足为E,由题意得,BC=DE=8,∠ADE=52°,DE=CD=1在Rt△ADE中,AD=DE•tan∠ADE=8×tan52°≈10.24,∴AB=AE+BE=10.24+1≈11(米)故答案为:11.14.(3分)如图,点A、B在反比函数y=的图象上,A、B的纵坐标分别是3和6,连接OA、OB,则△OAB的面积是 9 .【解答】解:∵点A、B在反比函数y=的图象上,A、B的纵坐标分别是3和6,∴A(4,3),B(2,6),作AD⊥y轴于D,BE⊥y轴于E,∴S△AOD=S△BOE=×12=6,∵S△OAB=S△AOD+S梯形ABED﹣S△BOE=S梯形ABED,∴S△AOB=(4+2)×(6﹣3)=9,故答案为9.第31页(共31页)
15.(3分)已知△ABC的三边a、b、c满足b+|c﹣3|+a2﹣8a=4﹣19,则△ABC的内切圆半径= 1 .【解答】解:∵b+|c﹣3|+a2﹣8a=4﹣19,∴|c﹣3|+(a﹣4)2+()2=0,∴c=3,a=4,b=5,∵32+42=25=52,∴c2+a2=b2,∴△ABC是直角三角形,∠ABC=90°,设内切圆的半径为r,根据题意,得S△ABC=×3×4=×3×r+×4×r+×r×5,∴r=1,故答案为:1.16.(3分)已知k为正整数,无论k取何值,直线11:y=kx+k+1与直线12:y=(k+1)x+k+2都交于一个固定的点,这个点的坐标是 (﹣1,1) ;记直线11和12与x轴围成的三角形面积为Sk,则S1= ,S1+S2+S3+…+S100的值为 .【解答】解:∵直线11:y=kx+k+1=k(x+1)+1,∴直线12:y=(k+1)x+k+2经过点(﹣1,1);∵直线12:y=(k+1)x+k+2=k(x+1)+(x+1)+1=(k+1)(x+1)+1,∴直线12:y=(k+1)x+k+2经过点(﹣1,1).∴无论k取何值,直线l1与l2的交点均为定点(﹣1,1).∵直线11:y=kx+k+1与x轴的交点为(﹣,0),直线12:y=(k+1)x+k+2与x轴的交点为(﹣,0),∴SK=|﹣+|×1=,第31页(共31页)
∴S1==;∴S1+S2+S3+…+S100=[++…]=[(1﹣)+()+…+(﹣)]=×(1﹣)==.故答案为(﹣1,1);;.三、解答题:解答时应写出必要的文字说明、证明过程或演算步骤(共72分)17.(5分)计算:﹣22+()﹣2+(π﹣)0+.【解答】解:原式=﹣4+9+1﹣5=1.18.(7分)求代数式(﹣x﹣1)÷的值,其中x=+1.【解答】解:原式=(﹣)÷=)÷=•=﹣x(x﹣1)当x=+1时,原式=﹣(+1)(+1﹣1)=﹣(+1)×=﹣2﹣.19.(7分)如图,点O在∠ABC的边BC上,以OB为半径作⊙O,∠ABC的平分线BM交⊙O于点D,过点D作DE⊥BA于点E.(1)尺规作图(不写作法,保留作图痕迹),补全图形;(2)判断⊙O与DE交点的个数,并说明理由.第31页(共31页)
【解答】解:(1)如图,⊙O,射线BM,直线DE即为所求.(2)直线DE与⊙O相切,交点只有一个.理由:∵OB=OD,∴∠ODB=∠OBD,∵BD平分∠ABC,∴∠ABM=∠CBM,∴∠ODB=∠ABD,∴OD∥AB,∵DE⊥AB,∴AE⊥OD,∴直线AE是⊙O的切线,∴⊙O与直线AE只有一个交点.20.(7分)争创全国文明城市,从我做起.尚理中学在八年级开设了文明礼仪校本课程,为了解学生的学习情况,随机抽取了20名学生的测试成绩,分数如下:94839086948896100898294828489889398949392整理上面的数据,得到频数分布表和扇形统计图:等级成绩/分频数A95≤x≤100aB90≤x<958第31页(共31页)
C85≤x<905D80≤x<854根据以上信息,解答下列问题.(1)填空:a= 3 ,b= 40 ;(2)若成绩不低于90分为优秀,估计该校1200名八年级学生中,达到优秀等级的人数;(3)已知A等级中有2名女生,现从A等级中随机抽取2名同学,试用列表或画树状图的方法求出恰好抽到一男一女的概率.【解答】解:(1)由题意知a=20﹣(8+5+4)=3,b%=×100%=40%,即b=40;故答案为:3、40;(2)估计该校1200名八年级学生中,达到优秀等级的人数为1200×=660(人);(3)列表如下:男女女男(男,女)(男,女)女(男,女)(女,女)女(男,女)(女,女)所有等可能的结果有6种,其中恰好是一名男生和一名女生的情况有4种,∴恰好抽到一男一女的概率为=.21.(8分)如图,△ABC中,BC=2AB,D、E分别是边BC、AC的中点.将△CDE绕点E旋转180度,得△AFE.(1)判断四边形ABDF的形状,并证明;(2)已知AB=3,AD+BF=8,求四边形ABDF的面积S.第31页(共31页)
【解答】解:(1)结论:四边形ABDF是菱形.∵CD=DB,CE=EA,∴DE∥AB,AB=2DE,由旋转的性质可知,DE=EF,∴AB=DF,AB∥DF,∴四边形ABDF是平行四边形,∵BC=2AB,BD=DC,∴BA=BD,∴四边形ABDF是菱形.(2)连接BF,AD交于点O.∵四边形ABDF是菱形,∴AD⊥BF,OB=OF,AO=OD,设OA=x,OB=y,则有,∴x+y=4,∴x2+2xy+y2=16,∴2xy=7,∴S菱形ABDF=×BF×AD=2xy=7.22.(8分)某家具商场计划购进某种餐桌、餐椅进行销售,有关信息如下表:第31页(共31页)
原进价(元/张)零售价(元/张)成套售价(元/套)餐桌a380940餐椅a﹣140160已知用600元购进的餐椅数量与用1300元购进的餐桌数量相同.(1)求表中a的值;(2)该商场计划购进餐椅的数量是餐桌数量的5倍还多20张,且餐桌和餐椅的总数量不超过200张.若将一半的餐桌成套(一张餐桌和四张餐椅配成一套)销售,其余餐桌、餐椅以零售方式销售,请问怎样进货,才能获得最大利润?最大利润是多少?【解答】解:(1)根据题意得:,解得a=260,经检验,a=260是原分式方程的解.答:表中a的值为260.(2)设购进餐桌x张,则购进餐椅(5x+20)张,根据题意得:x+5x+20≤200,解得:x≤30.设销售利润为y元,根据题意得:y=[940﹣260﹣4×(260﹣110)]×x+(380﹣260)×x+[160﹣(260﹣110)]×(5x+20﹣4×x)=250x+1000,∵k=250>0,∴当x=30时,y取最大值,最大值为:250×30+1000=8500.答:当购进餐桌30张、餐椅170张时,才能获得最大利润,最大利润是8500元.23.(8分)如图,在梯形ABCD中,AB∥CD,∠B=90°,AB=6cm,CD=2cm.P为线段BC上的一动点,且和B、C不重合,连接PA,过点P作PE⊥PA交射线CD于点E.聪聪根据学习函数的经验,对这个问题进行了研究:(1)通过推理,他发现△ABP∽△PCE,请你帮他完成证明.(2)利用几何画板,他改变BC的长度,运动点P,得到不同位置时,CE、BP的长度的对应值:第31页(共31页)
当BC=6cm时,得表1:BP/cm…12345…CE/cm…0.831.331.501.330.83…当BC=8cm时,得表2:BP/cm…1234567…CE/cm…1.172.002.502.672.502.001.17…这说明,点P在线段BC上运动时,要保证点E总在线段CD上,BC的长度应有一定的限制.①填空:根据函数的定义,我们可以确定,在BP和CE的长度这两个变量中, BP 的长度为自变量, EC 的长度为因变量;②设BC=mcm,当点P在线段BC上运动时,点E总在线段CD上,求m的取值范围.【解答】(1)证明:∵AB∥CD,∴∠B+∠C=90°,∵∠B=90°,∴∠B=∠C=90°,∵AP⊥PE,∴∠APE=90°,∴∠APB+∠EPC=90°,∵∠EPC+∠PEC=90°,∴∠APB=∠PEC,∴△ABP∽△PCE.(2)解:①根据函数的定义,我们可以确定,在BP和CE的长度这两个变量中,BP第31页(共31页)
的长度为自变量,EC的长度为因变量,故答案为:BP,EC.②设BP=xcm,CE=ycm.∵△ABP∽△PCE,∴=,∴=,∴y=﹣x2+mx=﹣(x﹣m)2+,∵﹣<0,∴x=m时,y有最大值,∵点E在线段CD上,CD=2cm,∴≤2,∴m≤4,∴0<m≤4.24.(10分)(1)[阅读与证明]如图1,在正△ABC的外角∠CAH内引射线AM,作点C关于AM的对称点E(点E在∠CAH内),连接BE,BE、CE分别交AM于点F、G.①完成证明:∵点E是点C关于AM的对称点,∴∠AGE=90°,AE=AC,∠1=∠2.∵正△ABC中,∠BAC=60°,AB=AC,∴AE=AB,得∠3=∠4.在△ABE中,∠1+∠2+60°+∠3+∠4=180°,∴∠1+∠3= 60 °.在△AEG中,∠FEG+∠3+∠1=90°,∴∠FEG= 30 °.第31页(共31页)
②求证:BF=AF+2FG.(2)[类比与探究]把(1)中的“正△ABC”改为“正方形ABDC”,其余条件不变,如图2.类比探究,可得:①∠FEG= 45 °;②线段BF、AF、FG之间存在数量关系 BF=AF+FG .(3)[归纳与拓展]如图3,点A在射线BH上,AB=AC,∠BAC=α(0°<α<180°),在∠CAH内引射线AM,作点C关于AM的对称点E(点E在∠CAH内),连接BE,BE、CE分别交AM于点F、G.则线段BF、AF、GF之间的数量关系为 BF=2AF•sinα+ .【解答】(1)①解:如图1中,∵点E是点C关于AM的对称点,∴∠AGE=90°,AE=AC,∠1=∠2.∵正△ABC中,∠BAC=60°,AB=AC,∴AE=AB,得∠3=∠4.在△ABE中,∠1+∠2+60°+∠3+∠4=180°,∴∠1+∠3=60°.在△AEG中,∠FEG+∠3+∠1=90°,∴∠FEG=30°.故答案为60,30.第31页(共31页)
②证明:如图1中,连接CF,在FB上取一点T,使得FT=CF,连接CT.∵C,E关于AM对称,∴AM垂直平分线段EC,∴FE=FC,∴∠FEC=∠FCE=30°,EF=2FG,∴∠CFT=∠FEC+∠FCE=60°,∵FC=FT,∴△CFT是等边三角形,∴∠ACB=∠FCT=60°,CF=CT=FT,∴∠BCT=∠ACF,∵CB=CA,∴△BCT≌△ACF(SAS),∴BT=AF,∴BF=BT+FT=AF+EF=AF+2FG.(2)解:①如图2中,∵AB=AC=AE,∴点A是△ECB的外接圆的圆心,∴∠BEC=∠BAC,∵∠BAC=90°,∴∠FEG=45°.故答案为45.②结论:BF=AF+FG.理由:如图2中,连接CF,在FB上取一点T,使得FT=CF,连接CT.第31页(共31页)
∵AM⊥EC,CG=CE,∴FC=EF,∴∠FEC=∠FCE=45°,EF=FG,∴∠CFT=∠FEC+∠FCE=90°,∵CF=CT,∴△CFT是等腰直角三角形,∴CT=CF,∵△ABC是等腰直角三角形,∴BC=AC,∴=,∵∠BCA=∠TCF=45°,∴∠BCT=∠ACF,∴△BCT∽△ACF,∴==,∴BT=CF,∴BF=BT+TF=AF+EAF+FG..(3)如图3中,连接CF,BC,在BF上取一点T,使得FT=CF.第31页(共31页)
∵AB=AC,∠BAC=α,∴=sinα,∴=2•sinα,∵AB=AC=AE,∴∠BEC=∠BAC=α,EF=,∵FC=FE,∴∠FEC=∠FCE=α,∴∠CFT=∠FEC+∠FCE=α,同法可证,△BCT∽△ACF,∴==2•sinα,∴BT=2AF•sinα,∴BF=BT+FT=2AF•sinα+EF.即BF=2AF•sinα+.故答案为:BF=2AF•sinα+.25.(12分)如图,在平面直角坐标系xOy中,已知直线y=x﹣2与x轴交于点A,与y轴交于点B,过A、B两点的抛物线y=ax2+bx+c与x轴交于另一点C(﹣1,0).(1)求抛物线的解析式;(2)在抛物线上是否存在一点P,使S△PAB=S△OAB?若存在,请求出点P的坐标,若不存在,请说明理由;第31页(共31页)
(3)点M为直线AB下方抛物线上一点,点N为y轴上一点,当△MAB的面积最大时,求MN+ON的最小值.【解答】解:(1)∵直线y=x﹣2与x轴交于点A,与y轴交于点B,∴点A(4,0),点B(0,﹣2),设抛物线解析式为:y=a(x+1)(x﹣4),∴﹣2=﹣4a,∴a=,∴抛物线解析式为:y=(x+1)(x﹣4)=x2﹣x﹣2;(2)如图,当点P在直线AB上方时,过点O作OP∥AB,交抛物线与点P,∵OP∥AB,∴△ABP和△ABP是等底等高的两个三角形,∴S△PAB=S△ABO,∵OP∥AB,∴直线PO的解析式为y=x,联立方程组可得,第31页(共31页)
解得:或,∴点P(2+2,1+)或(2﹣2,1﹣);当点P''在直线AB下方时,在OB的延长线上截取BE=OB=2,过点E作EP''∥AB,交抛物线于点P'',∴AB∥EP''∥OP,OB=BE,∴S△ABP''=S△ABO,∵EP''∥AB,且过点E(0,﹣4),∴直线EP''解析式为y=x﹣4,联立方程组可得,解得,∴点P''(2,﹣3),综上所述:点P坐标为(2+2,1+)或(2﹣2,1﹣)或(2,﹣3);(3)如图2,过点M作MF⊥AC,交AB于F,设点M(m,m2﹣m﹣2),则点F(m,m﹣2),∴MF=m﹣2﹣(m2﹣m﹣2)=﹣(m﹣2)2+2,∴△MAB的面积=×4×[﹣(m﹣2)2+2]=﹣(m﹣2)2+4,∴当m=2时,△MAB的面积有最大值,∴点M(2,﹣3),如图3,过点O作∠KOB=30°,过点N作KN⊥OK于K点,过点M作MR⊥OK于R,延长MF交直线KO于Q,第31页(共31页)
∵∠KOB=30°,KN⊥OK,∴KN=ON,∴MN+ON=MN+KN,∴当点M,点N,点K三点共线,且垂直于OK时,MN+ON有最小值,即最小值为MP,∵∠KOB=30°,∴直线OK解析式为y=x,当x=2时,点Q(2,2),∴QM=2+3,∵OB∥QM,∴∠PQM=∠PON=30°,∴PM=QM=+,∴MN+ON的最小值为+.声明:试题解析著作权属菁优网所有,未经书面同意,不得复制发布日期:2020/7/229:28:24;用户:柯瑞;邮箱:ainixiaoke00@163.com;学号:500557第31页(共31页)