2020年山东省烟台市中考数学试卷
加入VIP免费下载

2020年山东省烟台市中考数学试卷

ID:895926

大小:861 B

页数:26页

时间:2022-02-26

加入VIP免费下载
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天资源网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:403074932
资料简介
2020年山东省烟台市中考数学试卷一、选择题(本题共12个小题,每小题3分,满分36分)每小题都给出标号为A,B,C,D四个备选答案,其中有且只有一个是正确的.1.(3分)4的平方根是(  )A.2B.﹣2C.±2D.2.(3分)下列关于数字变换的图案中,是中心对称图形但不是轴对称图形的是(  )A.B.C.D.3.(3分)实数a,b,c在数轴上的对应点的位置如图所示,那么这三个数中绝对值最大的是(  )A.aB.bC.cD.无法确定4.(3分)如图,是一个几何体的三视图,则这个几何体是(  )A.B.C.D.5.(3分)如果将一组数据中的每个数都减去5,那么所得的一组新数据(  )A.众数改变,方差改变B.众数不变,平均数改变C.中位数改变,方差不变D.中位数不变,平均数不变6.(3分)利用如图所示的计算器进行计算,按键操作不正确的是(  )第26页(共26页) A.按键即可进入统计计算状态B.计算的值,按键顺序为:C.计算结果以“度”为单位,按键可显示以“度”“分”“秒”为单位的结果D.计算器显示结果为时,若按键,则结果切换为小数格式0.3333333337.(3分)如图,△OA1A2为等腰直角三角形,OA1=1,以斜边OA2为直角边作等腰直角三角形OA2A3,再以OA3为直角边作等腰直角三角形OA3A4,…,按此规律作下去,则OAn的长度为(  )A.()nB.()n﹣1C.()nD.()n﹣18.(3分)量角器测角度时摆放的位置如图所示,在△AOB中,射线OC交边AB于点D,则∠ADC的度数为(  )A.60°B.70°C.80°D.85°第26页(共26页) 9.(3分)七巧板是我们祖先的一项创造,被誉为“东方魔板”.在一次数学活动课上,小明用边长为4cm的正方形纸片制作了如图所示的七巧板,并设计了下列四幅作品﹣﹣“奔跑者”,其中阴影部分的面积为5cm2的是(  )A.B.C.D.10.(3分)如图,点G为△ABC的重心,连接CG,AG并延长分别交AB,BC于点E,F,连接EF,若AB=4.4,AC=3.4,BC=3.6,则EF的长度为(  )A.1.7B.1.8C.2.2D.2.411.(3分)如图,在矩形ABCD中,点E在DC上,将矩形沿AE折叠,使点D落在BC边上的点F处.若AB=3,BC=5,则tan∠DAE的值为(  )第26页(共26页) A.B.C.D.12.(3分)如图,正比例函数y1=mx,一次函数y2=ax+b和反比例函数y3=的图象在同一直角坐标系中,若y3>y1>y2,则自变量x的取值范围是(  )A.x<﹣1B.﹣0.5<x<0或x>1C.0<x<1D.x<﹣1或0<x<1二、填空题(本大题共6个小题,每小题3分,满分18分)13.(3分)5G是第五代移动通信技术,其网络下载速度可以达到每秒1300000KB以上,正常下载一部高清电影约需1秒.将1300000用科学记数法表示为  .14.(3分)已知正多边形的一个外角等于40°,则这个正多边形的内角和的度数为  .15.(3分)关于x的一元二次方程(m﹣1)x2+2x﹣1=0有两个不相等的实数根,则m的取值范围是  .16.(3分)按如图所示的程序计算函数y的值,若输入的x值为﹣3,则输出y的结果为  .17.(3分)如图,已知点A(2,0),B(0,4),C(2,4),D(6,6),连接AB,CD,将线段AB绕着某一点旋转一定角度,使其与线段CD重合(点A与点C重合,点B与点D第26页(共26页) 重合),则这个旋转中心的坐标为  .18.(3分)二次函数y=ax2+bx+c的图象如图所示,下列结论:①ab>0;②a+b﹣1=0;③a>1;④关于x的一元二次方程ax2+bx+c=0的一个根为1,另一个根为﹣.其中正确结论的序号是  .三、解答题(本大题共7个小题,满分66分)19.(6分)先化简,再求值:(﹣)÷,其中x=+1,y=﹣1.20.(8分)奥体中心为满足暑期学生对运动的需求,欲开设球类课程,该中心随机抽取部分学生进行问卷调查,被调查学生须从“羽毛球”、“篮球”、“足球”、“排球”、“乒乓球”中选择自己最喜欢的一项.根据调查结果绘制了不完整的条形统计图和扇形统计图,请根据图中信息,解答下列问题:(1)此次共调查了多少名学生?(2)将条形统计图补充完整;(3)我们把“羽毛球”“篮球”,“足球”、“排球”、“乒乓球”分别用A,B,C,D,E第26页(共26页) 表示.小明和小亮分别从这些项目中任选一项进行训练,利用树状图或表格求出他俩选择不同项目的概率.21.(9分)新冠疫情期间,口罩成为了人们出行必备的防护工具.某药店三月份共销售A,B两种型号的口罩9000只,共获利润5000元,其中A,B两种型号口罩所获利润之比为2:3.已知每只B型口罩的销售利润是A型口罩的1.2倍.(1)求每只A型口罩和B型口罩的销售利润;(2)该药店四月份计划一次性购进两种型号的口罩共10000只,其中B型口罩的进货量不超过A型口罩的1.5倍,设购进A型口罩m只,这1000只口罩的销售总利润为W元.该药店如何进货,才能使销售总利润最大?22.(9分)如图,在▱ABCD中,∠D=60°,对角线AC⊥BC,⊙O经过点A,B,与AC交于点M,连接AO并延长与⊙O交于点F,与CB的延长线交于点E,AB=EB.(1)求证:EC是⊙O的切线;(2)若AD=2,求的长(结果保留π).23.(9分)今年疫情期间,针对各种入口处人工测量体温存在的感染风险高、效率低等问题,清华大学牵头研制一款“测温机器人”,如图1,机器人工作时,行人抬手在测温头处测量手腕温度,体温合格则机器人抬起臂杆行人可通行,不合格时机器人不抬臂杆并报警,从而有效阻隔病原体.第26页(共26页) (1)为了设计“测温机器人”的高度,科研团队采集了大量数据.下表是抽样采集某一地区居民的身高数据:测量对象男性(18~60岁)女性(18~55岁)抽样人数(人)20005000200002000500020000平均身高(厘米)173175176164165164根据你所学的知识,若要更准确的表示这一地区男、女的平均身高,男性应采用  厘米,女性应采用  厘米;(2)如图2,一般的,人抬手的高度与身高之比为黄金比时给人的感觉最舒适,由此利用(1)中的数据得出测温头点P距地面105厘米.指示牌挂在两臂杆AB,AC的连接点A处,A点距地面110厘米.臂杆落下时两端点B,C在同一水平线上,BC=100厘米,点C在点P的正下方5厘米处.若两臂杆长度相等,求两臂杆的夹角.(参考数据表)#DLQZ计算器按键顺序计算结果(近似值)计算器按键顺序计算结果(近似值)0.178.70.284.31.75.73.511.324.(12分)如图,在等边三角形ABC中,点E是边AC上一定点,点D是直线BC上一动点,以DE为一边作等边三角形DEF,连接CF.第26页(共26页) 【问题解决】如图1,若点D在边BC上,求证:CE+CF=CD;【类比探究】如图2,若点D在边BC的延长线上,请探究线段CE,CF与CD之间存在怎样的数量关系?并说明理由.25.(13分)如图,抛物线y=ax2+bx+2与x轴交于A,B两点,且OA=2OB,与y轴交于点C,连接BC,抛物线对称轴为直线x=,D为第一象限内抛物线上一动点,过点D作DE⊥OA于点E,与AC交于点F,设点D的横坐标为m.(1)求抛物线的表达式;(2)当线段DF的长度最大时,求D点的坐标;(3)抛物线上是否存在点D,使得以点O,D,E为顶点的三角形与△BOC相似?若存在,求出m的值;若不存在,请说明理由.第26页(共26页) 2020年山东省烟台市中考数学试卷参考答案与试题解析一、选择题(本题共12个小题,每小题3分,满分36分)每小题都给出标号为A,B,C,D四个备选答案,其中有且只有一个是正确的.1.(3分)4的平方根是(  )A.2B.﹣2C.±2D.【解答】解:4的平方根是±2.故选:C.2.(3分)下列关于数字变换的图案中,是中心对称图形但不是轴对称图形的是(  )A.B.C.D.【解答】解:A、是中心对称图形,不是轴对称图形,故此选项符合题意;B、不是中心对称图形,是轴对称图形,故此选项不符合题意;C、不是中心对称图形,也不是轴对称图形,故此选项不符合题意;D、是轴对称图形,也是中心对称图形,故此选项不符合题意.故选:A.3.(3分)实数a,b,c在数轴上的对应点的位置如图所示,那么这三个数中绝对值最大的是(  )A.aB.bC.cD.无法确定【解答】解:有理数a,b,c在数轴上的对应点的位置如图所示,这三个数中,实数a离原点最远,所以绝对值最大的是:a.故选:A.4.(3分)如图,是一个几何体的三视图,则这个几何体是(  )第26页(共26页) A.B.C.D.【解答】解:结合三个视图发现,这个几何体是长方体和圆锥的组合图形.故选:B.5.(3分)如果将一组数据中的每个数都减去5,那么所得的一组新数据(  )A.众数改变,方差改变B.众数不变,平均数改变C.中位数改变,方差不变D.中位数不变,平均数不变【解答】解:如果将一组数据中的每个数都减去5,那么所得的一组新数据的众数、中位数、平均数都减少5,方差不变,故选:C.6.(3分)利用如图所示的计算器进行计算,按键操作不正确的是(  )A.按键即可进入统计计算状态B.计算的值,按键顺序为:C.计算结果以“度”为单位,按键可显示以“度”“分”“秒”为单位的结果D.计算器显示结果为时,若按键,则结果切换为小数格式0.333333333第26页(共26页) 【解答】解:A、按键即可进入统计计算状态是正确的,故选项A不符合题意;B、计算的值,按键顺序为:,故选项B符合题意;C、计算结果以“度”为单位,按键可显示以“度”“分”“秒”为单位的结果是正确的,故选项C不符合题意;D、计算器显示结果为时,若按键,则结果切换为小数格式0.333333333是正确的,故选项D不符合题意;故选:B.7.(3分)如图,△OA1A2为等腰直角三角形,OA1=1,以斜边OA2为直角边作等腰直角三角形OA2A3,再以OA3为直角边作等腰直角三角形OA3A4,…,按此规律作下去,则OAn的长度为(  )A.()nB.()n﹣1C.()nD.()n﹣1【解答】解:∵△OA1A2为等腰直角三角形,OA1=1,∴OA2=;∵△OA2A3为等腰直角三角形,∴OA3=2=;∵△OA3A4为等腰直角三角形,∴OA4=2=.∵△OA4A5为等腰直角三角形,∴OA5=4=,第26页(共26页) ……∴OAn的长度为()n﹣1.故选:B.8.(3分)量角器测角度时摆放的位置如图所示,在△AOB中,射线OC交边AB于点D,则∠ADC的度数为(  )A.60°B.70°C.80°D.85°【解答】解:∵OA=OB,∠AOB=140°,∴∠A=∠B=(180°﹣140°)=20°,∵∠AOC=60°,∴∠ADC=∠A+∠AOC=20°+60°=80°,故选:C.9.(3分)七巧板是我们祖先的一项创造,被誉为“东方魔板”.在一次数学活动课上,小明用边长为4cm的正方形纸片制作了如图所示的七巧板,并设计了下列四幅作品﹣﹣“奔跑者”,其中阴影部分的面积为5cm2的是(  )A.B.第26页(共26页) C.D.【解答】解:最小的等腰直角三角形的面积=××42=1(cm2),平行四边形面积为2cm2,中等的等腰直角三角形的面积为2cm2,最大的等腰直角三角形的面积为4cm2,则A、阴影部分的面积为2+2=4(cm2),不符合题意;B、阴影部分的面积为1+2=3(cm2),不符合题意;C、阴影部分的面积为4+2=6(cm2),不符合题意;D、阴影部分的面积为4+1=5(cm2),符合题意.故选:D.10.(3分)如图,点G为△ABC的重心,连接CG,AG并延长分别交AB,BC于点E,F,连接EF,若AB=4.4,AC=3.4,BC=3.6,则EF的长度为(  )A.1.7B.1.8C.2.2D.2.4【解答】解:∵点G为△ABC的重心,∴AE=BE,BF=CF,∴EF==1.7,故选:A.11.(3分)如图,在矩形ABCD中,点E在DC上,将矩形沿AE折叠,使点D落在BC边上的点F处.若AB=3,BC=5,则tan∠DAE的值为(  )第26页(共26页) A.B.C.D.【解答】解:∵四边形ABCD为矩形,∴AD=BC=5,AB=CD=3,∵矩形ABCD沿直线AE折叠,顶点D恰好落在BC边上的F处,∴AF=AD=5,EF=DE,在Rt△ABF中,BF===4,∴CF=BC﹣BF=5﹣4=1,设CE=x,则DE=EF=3﹣x在Rt△ECF中,∵CE2+FC2=EF2,∴x2+12=(3﹣x)2,解得x=,∴DE=EF=3﹣x=,∴tan∠DAE===,故选:D.12.(3分)如图,正比例函数y1=mx,一次函数y2=ax+b和反比例函数y3=的图象在同一直角坐标系中,若y3>y1>y2,则自变量x的取值范围是(  )A.x<﹣1B.﹣0.5<x<0或x>1C.0<x<1D.x<﹣1或0<x<1【解答】解:由图象可知,当x<﹣1或0<x<1时,双曲线y3落在直线y1上方,且直线y1落在直线y2上方,即y3>y1>y2,所以若y3>y1>y2,则自变量x的取值范围是x<﹣1或0<x<1.故选:D.第26页(共26页) 二、填空题(本大题共6个小题,每小题3分,满分18分)13.(3分)5G是第五代移动通信技术,其网络下载速度可以达到每秒1300000KB以上,正常下载一部高清电影约需1秒.将1300000用科学记数法表示为 1.3×106 .【解答】解:将数据1300000用科学记数法可表示为:1.3×106.故答案为:1.3×106.14.(3分)已知正多边形的一个外角等于40°,则这个正多边形的内角和的度数为 1260° .【解答】解:正n边形的每个外角相等,且其和为360°,据此可得=40°,解得n=9.(9﹣2)×180°=1260°,即这个正多边形的内角和为1260°.故答案为:1260°.15.(3分)关于x的一元二次方程(m﹣1)x2+2x﹣1=0有两个不相等的实数根,则m的取值范围是 m>0且m≠1 .【解答】解:根据题意得m﹣1≠0且△=22﹣4(m﹣1)×(﹣1)>0,解得m>0且m≠1.故答案为:m>0且m≠1.16.(3分)按如图所示的程序计算函数y的值,若输入的x值为﹣3,则输出y的结果为 18 .【解答】解:∵﹣3<﹣1,∴x=﹣3代入y=2x2,得y=2×9=18,故答案为:18.第26页(共26页) 17.(3分)如图,已知点A(2,0),B(0,4),C(2,4),D(6,6),连接AB,CD,将线段AB绕着某一点旋转一定角度,使其与线段CD重合(点A与点C重合,点B与点D重合),则这个旋转中心的坐标为 (4,2) .【解答】解:平面直角坐标系如图所示,旋转中心是P点,P(4,2).故答案为(4,2).18.(3分)二次函数y=ax2+bx+c的图象如图所示,下列结论:①ab>0;②a+b﹣1=0;③a>1;④关于x的一元二次方程ax2+bx+c=0的一个根为1,另一个根为﹣.其中正确结论的序号是 ②③④ .第26页(共26页) 【解答】解:①由二次函数的图象开口向上可得a>0,对称轴在y轴的右侧,b<0,∴ab<0,故①错误;②由图象可知抛物线与x轴的交点为(1,0),与y轴的交点为(0,﹣1),∴c=﹣1,∴a+b﹣1=0,故②正确;③∵a+b﹣1=0,∴a﹣1=﹣b,∵b<0,∴a﹣1>0,∴a>1,故③正确;④∵抛物线与与y轴的交点为(0,﹣1),∴抛物线为y=ax2+bx﹣1,∵抛物线与x轴的交点为(1,0),∴ax2+bx﹣1=0的一个根为1,根据根与系数的关系,另一个根为﹣,故④正确;故答案为②③④.三、解答题(本大题共7个小题,满分66分)19.(6分)先化简,再求值:(﹣)÷,其中x=+1,y=﹣1.【解答】解:(﹣)÷,=[﹣]÷,=×,第26页(共26页) =,当x=+1,y=﹣1时,原式==2﹣.20.(8分)奥体中心为满足暑期学生对运动的需求,欲开设球类课程,该中心随机抽取部分学生进行问卷调查,被调查学生须从“羽毛球”、“篮球”、“足球”、“排球”、“乒乓球”中选择自己最喜欢的一项.根据调查结果绘制了不完整的条形统计图和扇形统计图,请根据图中信息,解答下列问题:(1)此次共调查了多少名学生?(2)将条形统计图补充完整;(3)我们把“羽毛球”“篮球”,“足球”、“排球”、“乒乓球”分别用A,B,C,D,E表示.小明和小亮分别从这些项目中任选一项进行训练,利用树状图或表格求出他俩选择不同项目的概率.【解答】解:(1)此次共调查的学生有:40÷=200(名);(2)足球的人数有:200﹣40﹣60﹣20﹣30=50(人),补全统计图如下:第26页(共26页) (3)根据题意画树状图如下:共用25种等可能的情况数,其中他俩选择不同项目的有20种,则他俩选择不同项目的概率是=.21.(9分)新冠疫情期间,口罩成为了人们出行必备的防护工具.某药店三月份共销售A,B两种型号的口罩9000只,共获利润5000元,其中A,B两种型号口罩所获利润之比为2:3.已知每只B型口罩的销售利润是A型口罩的1.2倍.(1)求每只A型口罩和B型口罩的销售利润;(2)该药店四月份计划一次性购进两种型号的口罩共10000只,其中B型口罩的进货量不超过A型口罩的1.5倍,设购进A型口罩m只,这1000只口罩的销售总利润为W元.该药店如何进货,才能使销售总利润最大?【解答】解:设销售A型口罩x只,销售B型口罩y只,根据题意得:,解答,经检验,x=4000,y=5000是原方程组的解,∴每只A型口罩的销售利润为:(元),每只B型口罩的销售利润为:0.5×1.2=0.6(元).第26页(共26页) 答:每只A型口罩和B型口罩的销售利润分别为0.5元,0.6元.(2)根据题意得,W=0.5m+0.6(10000﹣m)=﹣0.1m+6000,10000﹣m≤1.5m,解得m≥4000,∵0.1<0,∴W随m的增大而减小,∵m为正整数,∴当m=4000时,W取最大值,则﹣0.1×4000+6000=5600,即药店购进A型口罩4000只、B型口罩6000只,才能使销售总利润最大,增大利润为5600元.22.(9分)如图,在▱ABCD中,∠D=60°,对角线AC⊥BC,⊙O经过点A,B,与AC交于点M,连接AO并延长与⊙O交于点F,与CB的延长线交于点E,AB=EB.(1)求证:EC是⊙O的切线;(2)若AD=2,求的长(结果保留π).【解答】(1)证明:连接OB,∵四边形ABCD是平行四边形,∴∠ABC=∠D=60°,∵AC⊥BC,∴∠ACB=90°,∴∠BAC=30°,∵BE=AB,∴∠E=∠BAE,∵∠ABC=∠E+∠BAE=60°,∴∠E=∠BAE=30°,∵OA=OB,第26页(共26页) ∴∠ABO=∠OAB=30°,∴∠OBC=30°+60°=90°,∴OB⊥CE,∴EC是⊙O的切线;(2)∵四边形ABCD是平行四边形,∴BC=AD=2,过O作OH⊥AM于H,则四边形OBCH是矩形,∴OH=BC=2,∴OA==4,∠AOM=2∠AOH=60°,∴的长度==.23.(9分)今年疫情期间,针对各种入口处人工测量体温存在的感染风险高、效率低等问题,清华大学牵头研制一款“测温机器人”,如图1,机器人工作时,行人抬手在测温头处测量手腕温度,体温合格则机器人抬起臂杆行人可通行,不合格时机器人不抬臂杆并报警,从而有效阻隔病原体.(1)为了设计“测温机器人”的高度,科研团队采集了大量数据.下表是抽样采集某一地区居民的身高数据:第26页(共26页) 测量对象男性(18~60岁)女性(18~55岁)抽样人数(人)20005000200002000500020000平均身高(厘米)173175176164165164根据你所学的知识,若要更准确的表示这一地区男、女的平均身高,男性应采用 176 厘米,女性应采用 164 厘米;(2)如图2,一般的,人抬手的高度与身高之比为黄金比时给人的感觉最舒适,由此利用(1)中的数据得出测温头点P距地面105厘米.指示牌挂在两臂杆AB,AC的连接点A处,A点距地面110厘米.臂杆落下时两端点B,C在同一水平线上,BC=100厘米,点C在点P的正下方5厘米处.若两臂杆长度相等,求两臂杆的夹角.(参考数据表)#DLQZ计算器按键顺序计算结果(近似值)计算器按键顺序计算结果(近似值)0.178.70.284.31.75.73.511.3【解答】解:(1)用表格可知,男性应采用176厘米,女性应采用164厘米.故答案为176,164.(2)如图2中,∵AB=AC,AF⊥BC,∴BF=FC=50cm,∠FAC=∠FAB,由题意FC=10cm,∴tan∠FAC===5,∴∠FAC=78.7°,∴∠BAC=2∠FAC=157.4°,答:两臂杆的夹角为157.4°24.(12分)如图,在等边三角形ABC中,点E是边AC上一定点,点D是直线BC第26页(共26页) 上一动点,以DE为一边作等边三角形DEF,连接CF.【问题解决】如图1,若点D在边BC上,求证:CE+CF=CD;【类比探究】如图2,若点D在边BC的延长线上,请探究线段CE,CF与CD之间存在怎样的数量关系?并说明理由.【解答】【问题解决】证明:在CD上截取CH=CE,如图1所示:∵△ABC是等边三角形,∴∠ECH=60°,∴△CEH是等边三角形,∴EH=EC=CH,∠CEH=60°,∵△DEF是等边三角形,∴DE=FE,∠DEF=60°,∴∠DEH+∠HEF=∠FEC+∠HEF=60°,∴∠DEH=∠FEC,在△DEH和△FEC中,,∴△DEH≌△FEC(SAS),∴DH=CF,∴CD=CH+DH=CE+CF,∴CE+CF=CD;【类比探究】解:线段CE,CF与CD之间的等量关系是FC=CD+CE;理由如下:∵△ABC是等边三角形,∴∠A=∠B=60°,第26页(共26页) 过D作DG∥AB,交AC的延长线于点G,如图2所示:∵GD∥AB,∴∠GDC=∠B=60°,∠DGC=∠A=60°,∴∠GDC=∠DGC=60°,∴△GCD为等边三角形,∴DG=CD=CG,∠GDC=60°,∵△EDF为等边三角形,∴ED=DF,∠EDF=∠GDC=60°,∴∠EDG=∠FDC,在△EGD和△FCD中,,∴△EGD≌△FCD(SAS),∴EG=FC,∴FC=EG=CG+CE=CD+CE.25.(13分)如图,抛物线y=ax2+bx+2与x轴交于A,B两点,且OA=2OB,与y轴交于点C,连接BC,抛物线对称轴为直线x=,D为第一象限内抛物线上一动点,过点D作DE⊥OA于点E,与AC交于点F,设点D的横坐标为m.(1)求抛物线的表达式;(2)当线段DF的长度最大时,求D点的坐标;第26页(共26页) (3)抛物线上是否存在点D,使得以点O,D,E为顶点的三角形与△BOC相似?若存在,求出m的值;若不存在,请说明理由.【解答】解:(1)设OB=t,则OA=2t,则点A、B的坐标分别为(2t,0)、(﹣t,0),则x==(2t﹣t),解得:t=1,故点A、B的坐标分别为(2,0)、(﹣1,0),则抛物线的表达式为:y=a(x﹣2)(x+1)=ax2+bx+2,解得:a=﹣1,故抛物线的表达式为:y=﹣x2+x+2;(2)对于y=﹣x2+x+2,令x=0,则y=2,故点C(0,2),由点A、C的坐标得,直线AC的表达式为:y=﹣x+2,设点D的横坐标为m,则点D(m,﹣m2+m+2),则点F(m,﹣m+2),则DF=﹣m2+m+2﹣(﹣m+2)=﹣m2+2m,∵﹣1<0,故DF有最大值,此时m=1,点D(1,2);(3)存在,理由:点D(m,﹣m2+m+2)(m>0),则OD=m,DE=﹣m2+m+2,以点O,D,E为顶点的三角形与△BOC相似,则,即=2或,即=2或,解得:m=1或﹣2(舍去)或或(舍去),故m=1或.声明:试题解析著作权属菁优网所有,未经书面同意,不得复制发布第26页(共26页) 日期:2020/7/299:52:18;用户:柯瑞;邮箱:ainixiaoke00@163.com;学号:500557第26页(共26页)

10000+的老师在这里下载备课资料