2020年山东省临沂市中考数学试卷一、选择题(本大题共14小题,每小题3分,共42分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(3分)下列温度比﹣2℃低的是( )A.﹣3℃B.﹣1℃C.1℃D.3℃2.(3分)下列交通标志中,是中心对称图形的是( )A.B.C.D.3.(3分)如图,数轴上点A对应的数是,将点A沿数轴向左移动2个单位至点B,则点B对应的数是( )A.﹣B.﹣2C.D.4.(3分)根据图中三视图可知该几何体是( )A.三棱锥B.三棱柱C.四棱锥D.四棱柱5.(3分)如图,在△ABC中,AB=AC,∠A=40°,CD∥AB,则∠BCD=( )第24页(共24页)
A.40°B.50°C.60°D.70°6.(3分)计算(﹣2a3)2÷a2的结果是( )A.﹣2a3B.﹣2a4C.4a3D.4a47.(3分)设a=+2.则( )A.2<a<3B.3<a<4C.4<a<5D.5<a<68.(3分)一元二次方程x2﹣4x﹣8=0的解是( )A.x1=﹣2+2,x2=﹣2﹣2B.x1=2+2,x2=2﹣2C.x1=2+2,x2=2﹣2D.x1=2,x2=﹣29.(3分)从马鸣、杨豪、陆畅、江宽四人中抽调两人参加“寸草心”志愿服务队,恰好抽到马鸣和杨豪的概率是( )A.B.C.D.10.(3分)《孙子算经》是中国古代重要的数学著作,成书大约在一千五百年前,其中一道题,原文是:“今三人共车,两车空;二人共车,九人步.问人与车各几何?”意思是:现有若干人和车,若每辆车乘坐3人,则空余两辆车;若每辆车乘坐2人,则有9人步行.问人与车各多少?设有x人,y辆车,可列方程组为( )A.B.C.D.11.(3分)如图是甲、乙两同学五次数学测试成绩的折线图.比较甲、乙的成绩,下列说法正确的是( )第24页(共24页)
A.甲平均分高,成绩稳定B.甲平均分高,成绩不稳定C.乙平均分高,成绩稳定D.乙平均分高,成绩不稳定12.(3分)如图,P是面积为S的▱ABCD内任意一点,△PAD的面积为S1,△PBC的面积为S2,则( )A.S1+S2>B.S1+S2<C.S1+S2=D.S1+S2的大小与P点位置有关13.(3分)计算﹣的结果为( )A.B.C.D.14.(3分)如图,在⊙O中,AB为直径,∠AOC=80°.点D为弦AC的中点,点E为上任意一点.则∠CED的大小可能是( )第24页(共24页)
A.10°B.20°C.30°D.40°二、填空题(本大题共5小题,每小题3分,共15分)15.(3分)不等式2x+1<0的解集是 .16.(3分)若a+b=1,则a2﹣b2+2b﹣2= .17.(3分)点(﹣,m)和点(2,n)在直线y=2x+b上,则m与n的大小关系是 .18.(3分)如图,在△ABC中,D、E为边AB的三等分点,EF∥DG∥AC,H为AF与DG的交点.若AC=6,则DH= .19.(3分)我们知道,两点之间线段最短,因此,连接两点间线段的长度叫做两点间的距离;同理,连接直线外一点与直线上各点的所有线段中,垂线段最短,因此,直线外一点到这条直线的垂线段的长度,叫做点到直线的距离.类似地,连接曲线外一点与曲线上各点的所有线段中,最短线段的长度,叫做点到曲线的距离.依此定义,如图,在平面直角坐标系中,点A(2,1)到以原点为圆心,以1为半径的圆的距离为 .三、解答题(本大题共7小题,共63分)20.(7分)计算:+×﹣sin60°.21.(7分)2020年是脱贫攻坚年.为实现全员脱贫目标,某村贫困户在当地政府支持帮助下,办起了养鸡场.经过一段时间精心饲养,总量为3000只的一批鸡可以出售.现从中随机抽取50只,得到它们质量的统计数据如下:质量/kg组中值频数(只)第24页(共24页)
0.9≤x<1.11.061.1≤x<1.31.291.3≤x<1.51.4a1.5≤x<1.71.6151.7≤x<1.91.88根据以上信息,解答下列问题:(1)表中a= ,补全频数分布直方图;(2)这批鸡中质量不小于1.7kg的大约有多少只?(3)这些贫困户的总收入达到54000元,就能实现全员脱贫目标.按15元/kg的价格售出这批鸡后,该村贫困户能否脱贫?22.(7分)如图,要想使人安全地攀上斜靠在墙面上的梯子的顶端,梯子与地面所成的角α般要满足60°≤α≤75°,现有一架长5.5m的梯子.(1)使用这架梯子最高可以安全攀上多高的墙(结果保留小数点后一位)?(2)当梯子底端距离墙面2.2m时,α等于多少度(结果保留小数点后一位)?此时人是否能够安全使用这架梯子?(参考数据:sin75°≈0.97,cos75°≈0.26,tan75°≈3.73,sin23.6°≈0.40,cos66.4°≈0.40,tan21.8°≈0.40.)第24页(共24页)
23.(9分)已知蓄电池的电压为定值,使用蓄电池时,电流I(单位:A)与电阻R(单位:Ω)是反比例函数关系.当R=4Ω时,I=9A.(1)写出I关于R的函数解析式;(2)完成下表,并在给定的平面直角坐标系中画出这个函数的图象;R/Ω… …I/A… …(3)如果以此蓄电池为电源的用电器的限制电流不能超过10A,那么用电器可变电阻应控制在什么范围内?24.(9分)已知⊙O1的半径为r1,⊙O2的半径为r2.以O1为圆心,以r1+r2的长为半径画弧,再以线段O1O2的中点P为圆心,以O1O2的长为半径画弧,两弧交于点A,连接O1A,O2A,O1A交⊙O1于点B,过点B作O2A的平行线BC交O1O2于点C.(1)求证:BC是⊙O2的切线;第24页(共24页)
(2)若r1=2,r2=1,O1O2=6,求阴影部分的面积.25.(11分)已知抛物线y=ax2﹣2ax﹣3+2a2(a≠0).(1)求这条抛物线的对称轴;(2)若该抛物线的顶点在x轴上,求其解析式;(3)设点P(m,y1),Q(3,y2)在抛物线上,若y1<y2,求m的取值范围.26.(13分)如图,菱形ABCD的边长为1,∠ABC=60°,点E是边AB上任意一点(端点除外),线段CE的垂直平分线交BD,CE分别于点F,G,AE,EF的中点分别为M,N.(1)求证:AF=EF;(2)求MN+NG的最小值;(3)当点E在AB上运动时,∠CEF的大小是否变化?为什么?第24页(共24页)
2020年山东省临沂市中考数学试卷参考答案与试题解析一、选择题(本大题共14小题,每小题3分,共42分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(3分)下列温度比﹣2℃低的是( )A.﹣3℃B.﹣1℃C.1℃D.3℃【解答】解:根据两个负数,绝对值大的反而小可知﹣3<﹣2,所以比﹣2℃低的温度是﹣3℃.故选:A.2.(3分)下列交通标志中,是中心对称图形的是( )A.B.C.D.【解答】解:A、不是中心对称图形,不符合题意;B、是中心对称图形,符合题意;C、不是中心对称图形,不符合题意;D、不是中心对称图形,不符合题意.故选:B.3.(3分)如图,数轴上点A对应的数是,将点A沿数轴向左移动2个单位至点B,则点B对应的数是( )A.﹣B.﹣2C.D.【解答】解:点A向左移动2个单位,点B对应的数为:﹣2=﹣.故选:A.4.(3分)根据图中三视图可知该几何体是( )第24页(共24页)
A.三棱锥B.三棱柱C.四棱锥D.四棱柱【解答】解:根据图中三视图可知该几何体是三棱柱.故选:B.5.(3分)如图,在△ABC中,AB=AC,∠A=40°,CD∥AB,则∠BCD=( )A.40°B.50°C.60°D.70°【解答】解:∵在△ABC中,AB=AC,∠A=40°,∴∠ACB=70°,∵CD∥AB,∴∠ACD=180°﹣∠A=140°,∴∠BCD=∠ACD﹣∠ACB=70°.故选:D.6.(3分)计算(﹣2a3)2÷a2的结果是( )A.﹣2a3B.﹣2a4C.4a3D.4a4【解答】解:原式=4a6÷a2=4a4.故选:D.7.(3分)设a=+2.则( )A.2<a<3B.3<a<4C.4<a<5D.5<a<6【解答】解:∵2<<3,第24页(共24页)
∴4<+2<5,∴4<a<5.故选:C.8.(3分)一元二次方程x2﹣4x﹣8=0的解是( )A.x1=﹣2+2,x2=﹣2﹣2B.x1=2+2,x2=2﹣2C.x1=2+2,x2=2﹣2D.x1=2,x2=﹣2【解答】解:一元二次方程x2﹣4x﹣8=0,移项得:x2﹣4x=8,配方得:x2﹣4x+4=12,即(x﹣2)2=12,开方得:x﹣2=±2,解得:x1=2+2,x2=2﹣2.故选:B.9.(3分)从马鸣、杨豪、陆畅、江宽四人中抽调两人参加“寸草心”志愿服务队,恰好抽到马鸣和杨豪的概率是( )A.B.C.D.【解答】解:根据题意画图如下:共有12种等可能情况数,其中恰好抽到马鸣和杨豪的有2种,则恰好抽到马鸣和杨豪的概率是=;故选:C.10.(3分)《孙子算经》是中国古代重要的数学著作,成书大约在一千五百年前,其中一道题,原文是:“今三人共车,两车空;二人共车,九人步.问人与车各几何?”意思是:现有若干人和车,若每辆车乘坐3人,则空余两辆车;若每辆车乘坐2人,则有9人步行.问人与车各多少?设有x人,y辆车,可列方程组为( )第24页(共24页)
A.B.C.D.【解答】解:依题意,得:.故选:B.11.(3分)如图是甲、乙两同学五次数学测试成绩的折线图.比较甲、乙的成绩,下列说法正确的是( )A.甲平均分高,成绩稳定B.甲平均分高,成绩不稳定C.乙平均分高,成绩稳定D.乙平均分高,成绩不稳定【解答】解:甲==90,乙==80,因此甲的平均数较高;=[(100﹣90)2+(85﹣90)2+(80﹣90)2+(95﹣90)2]=50,=[(85﹣80)2+(90﹣80)2+(85﹣80)2]=30,∵50>30,∴甲的离散程度较高,不稳定,乙的离散程度较低,比较稳定;故选:B.12.(3分)如图,P是面积为S的▱ABCD内任意一点,△PAD的面积为S1,△PBC第24页(共24页)
的面积为S2,则( )A.S1+S2>B.S1+S2<C.S1+S2=D.S1+S2的大小与P点位置有关【解答】解:过点P作EF⊥AD交AD于点E,交BC于点F,∵四边形ABCD是平行四边形,∴AD=BC,∴S=BC•EF,,,∵EF=PE+PF,AD=BC,∴S1+S2=,故选:C.13.(3分)计算﹣的结果为( )A.B.C.D.【解答】解:原式=﹣==.故选:A.14.(3分)如图,在⊙O中,AB为直径,∠AOC=80°.点D为弦AC的中点,点E为第24页(共24页)
上任意一点.则∠CED的大小可能是( )A.10°B.20°C.30°D.40°【解答】解:连接OD、OE,∵OC=OA,∴△OAC是等腰三角形,∵点D为弦的中点,∴∠DOC=40°,∠BOC=100°,设∠BOE=x,则∠COE=100°﹣x,∠DOE=100°﹣x+40°,∵OC=OE,∠COE=100°﹣x,∴∠OEC=∠OCE=40°+x,∵OD<OE,∠DOE=100°﹣x+40°=140°﹣x,∴∠OED<20°+x,∴∠CED=∠OEC﹣∠OED>(40°+x)﹣(20°+x)=20°,∵∠CED<∠ABC=40°,∴20°<∠CED<40°故选:C.二、填空题(本大题共5小题,每小题3分,共15分)15.(3分)不等式2x+1<0的解集是 x<﹣ .【解答】解:移项,得:2x<﹣1,第24页(共24页)
系数化为1,得:x<﹣,故答案为x<﹣.16.(3分)若a+b=1,则a2﹣b2+2b﹣2= ﹣1 .【解答】解:∵a+b=1,∴a2﹣b2+2b﹣2=(a+b)(a﹣b)+2b﹣2=a﹣b+2b﹣2=a+b﹣2=1﹣2=﹣1.故答案为:﹣1.17.(3分)点(﹣,m)和点(2,n)在直线y=2x+b上,则m与n的大小关系是 m<n .【解答】解:∵直线y=2x+b中,k=2>0,∴此函数y随着x的增大而增大,∵﹣<2,∴m<n.故答案为m<n.18.(3分)如图,在△ABC中,D、E为边AB的三等分点,EF∥DG∥AC,H为AF与DG的交点.若AC=6,则DH= 1 .【解答】解:∵D、E为边AB的三等分点,EF∥DG∥AC,∴BE=DE=AD,BF=GF=CG,AH=HF,∴AB=3BE,DH是△AEF的中位线,∴DH=EF,第24页(共24页)
∵EF∥AC,∴△BEF∽△BAC,∴=,即=,解得:EF=2,∴DH=EF=×2=1,故答案为:1.19.(3分)我们知道,两点之间线段最短,因此,连接两点间线段的长度叫做两点间的距离;同理,连接直线外一点与直线上各点的所有线段中,垂线段最短,因此,直线外一点到这条直线的垂线段的长度,叫做点到直线的距离.类似地,连接曲线外一点与曲线上各点的所有线段中,最短线段的长度,叫做点到曲线的距离.依此定义,如图,在平面直角坐标系中,点A(2,1)到以原点为圆心,以1为半径的圆的距离为 ﹣1 .【解答】解:连接AO交⊙O于B,则线段AB的长度即为点A(2,1)到以原点为圆心,以1为半径的圆的距离,∵点A(2,1),∴OA==,∵OB=1,∴AB=﹣1,即点A(2,1)到以原点为圆心,以1为半径的圆的距离为﹣1,故答案为:﹣1.第24页(共24页)
三、解答题(本大题共7小题,共63分)20.(7分)计算:+×﹣sin60°.【解答】解:原式=﹣+﹣=+﹣=.21.(7分)2020年是脱贫攻坚年.为实现全员脱贫目标,某村贫困户在当地政府支持帮助下,办起了养鸡场.经过一段时间精心饲养,总量为3000只的一批鸡可以出售.现从中随机抽取50只,得到它们质量的统计数据如下:质量/kg组中值频数(只)0.9≤x<1.11.061.1≤x<1.31.291.3≤x<1.51.4a1.5≤x<1.71.6151.7≤x<1.91.88根据以上信息,解答下列问题:(1)表中a= 12 ,补全频数分布直方图;(2)这批鸡中质量不小于1.7kg的大约有多少只?(3)这些贫困户的总收入达到54000元,就能实现全员脱贫目标.按15元/kg的价格售出这批鸡后,该村贫困户能否脱贫?第24页(共24页)
【解答】解:(1)a=50﹣8﹣15﹣9﹣6=12(只),补全频数分布直方图;故答案为:12;(2)3000×=480(只)答:这批鸡中质量不小于1.7kg的大约有480只;(3)==1.44(千克),∵1.44×3000×15=64800>54000,∴能脱贫,答:该村贫困户能脱贫.22.(7分)如图,要想使人安全地攀上斜靠在墙面上的梯子的顶端,梯子与地面所成的角α般要满足60°≤α≤75°,现有一架长5.5m的梯子.(1)使用这架梯子最高可以安全攀上多高的墙(结果保留小数点后一位)?(2)当梯子底端距离墙面2.2m时,α第24页(共24页)
等于多少度(结果保留小数点后一位)?此时人是否能够安全使用这架梯子?(参考数据:sin75°≈0.97,cos75°≈0.26,tan75°≈3.73,sin23.6°≈0.40,cos66.4°≈0.40,tan21.8°≈0.40.)【解答】解:(1)由题意得,当α=75°时,这架梯子可以安全攀上最高的墙,在Rt△ABC中,sinα=,∴AC=AB•sinα≈5.5×0.97≈5.3,答:使用这架梯子最高可以安全攀上5.3m的墙;(2)在Rt△ABC中,cosα==0.4,则α≈66.4°,∵60°≤66.4°≤75°,∴此时人能够安全使用这架梯子.23.(9分)已知蓄电池的电压为定值,使用蓄电池时,电流I(单位:A)与电阻R(单位:Ω)是反比例函数关系.当R=4Ω时,I=9A.(1)写出I关于R的函数解析式;(2)完成下表,并在给定的平面直角坐标系中画出这个函数的图象;R/Ω… 3 4 5 6 8 9 10 12 …I/A… 12 9 7.2 6 4.5 4 3.6 3 …第24页(共24页)
(3)如果以此蓄电池为电源的用电器的限制电流不能超过10A,那么用电器可变电阻应控制在什么范围内?【解答】解:(1)电流I是电阻R的反比例函数,设I=,∵R=4Ω时,I=9A∴9=,解得k=4×9=36,∴I=;(2)列表如下:R/Ω3456891012I/A1297.264.543.63第24页(共24页)
(3)∵I≤10,I=,∴≤10,∴R≥3.6,即用电器可变电阻应控制在不低于3.6欧的范围内.24.(9分)已知⊙O1的半径为r1,⊙O2的半径为r2.以O1为圆心,以r1+r2的长为半径画弧,再以线段O1O2的中点P为圆心,以O1O2的长为半径画弧,两弧交于点A,连接O1A,O2A,O1A交⊙O1于点B,过点B作O2A的平行线BC交O1O2于点C.(1)求证:BC是⊙O2的切线;(2)若r1=2,r2=1,O1O2=6,求阴影部分的面积.【解答】(1)证明:连接AP,第24页(共24页)
∵以线段O1O2的中点P为圆心,以O1O2的长为半径画弧,∴O1P=AP=O2P=,∴∠O1AO2=90°,∵BC∥O2A,∴∠O1BC=∠O1AO2=90°,∴O1B⊥BC,∴BC是⊙O2的切线;(2)解:∵r1=2,r2=1,O1O2=6,∴O1A=,∴∠BO1P=60°,∴O1C=2O1B=4,∴BC===2,∴S阴影===﹣=2﹣π.25.(11分)已知抛物线y=ax2﹣2ax﹣3+2a2(a≠0).(1)求这条抛物线的对称轴;(2)若该抛物线的顶点在x轴上,求其解析式;(3)设点P(m,y1),Q(3,y2)在抛物线上,若y1<y2,求m的取值范围.【解答】解:(1)∵抛物线y=ax2﹣2ax﹣3+2a2=a(x﹣1)2+2a2﹣a﹣3.∴抛物线的对称轴为直线x=1;(2)∵抛物线的顶点在x轴上,∴2a2﹣a﹣3=0,第24页(共24页)
解得a=或a=﹣1,∴抛物线为y=x2﹣3x+或y=﹣x2+2x﹣1;(3)∵抛物线的对称轴为x=1,则Q(3,y2)关于x=1对称点的坐标为(﹣1,y2),∴当a=,﹣1<m<3时,y1<y2;当a=﹣1,m<﹣1或m>3时,y1<y2.26.(13分)如图,菱形ABCD的边长为1,∠ABC=60°,点E是边AB上任意一点(端点除外),线段CE的垂直平分线交BD,CE分别于点F,G,AE,EF的中点分别为M,N.(1)求证:AF=EF;(2)求MN+NG的最小值;(3)当点E在AB上运动时,∠CEF的大小是否变化?为什么?【解答】解:(1)连接CF,∵FG垂直平分CE,∴CF=EF,∵四边形ABCD为菱形,∴A和C关于对角线BD对称,∴CF=AF,∴AF=EF;(2)连接AC,第24页(共24页)
∵M和N分别是AE和EF的中点,点G为CE中点,∴MN=AF,NG=CF,即MN+NG=(AF+CF),当点F与菱形ABCD对角线交点O重合时,AF+CF最小,即此时MN+NG最小,∵菱形ABCD边长为1,∠ABC=60°,∴△ABC为等边三角形,AC=AB=1,即MN+NG的最小值为;(3)不变,理由是:延长EF,交DC于H,∵∠CFH=∠FCE+∠FEC,∠AFH=∠FAE+∠FEA,∴∠AFC=∠FCE+∠FEC+∠FAE+∠FEA,∵点F在菱形ABCD对角线BD上,根据菱形的对称性可得:∠AFD=∠CFD=∠AFC,∵AF=CF=EF,∴∠AEF=∠EAF,∠FEC=∠FCE,∴∠AFD=∠FAE+∠ABF=∠FAE+∠CEF,∴∠ABF=∠CEF,∵∠ABC=60°,∴∠ABF=∠CEF=30°,为定值.第24页(共24页)
声明:试题解析著作权属菁优网所有,未经书面同意,不得复制发布日期:2020/7/249:29:52;用户:柯瑞;邮箱:ainixiaoke00@163.com;学号:500557第24页(共24页)