2020年湖南省张家界市中考数学试卷
加入VIP免费下载

2020年湖南省张家界市中考数学试卷

ID:895976

大小:452 B

页数:21页

时间:2022-02-26

加入VIP免费下载
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天资源网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:403074932
资料简介
2020年湖南省张家界市中考数学试卷一、选择题(本大题共8个小题,每小题3分,满分24分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)的倒数是(  )A.﹣B.C.2020D.﹣20202.(3分)如图是由5个完全相同的小正方体组成的立体图形,则它的主视图是(  )A.B.C.D.3.(3分)下列计算正确的是(  )A.2a+3a=5a2B.(a2)3=a5C.(a+1)2=a2+1D.(a+2)(a﹣2)=a2﹣44.(3分)下列采用的调查方式中,不合适的是(  )A.了解澧水河的水质,采用抽样调查B.了解一批灯泡的使用寿命,采用全面调查C.了解张家界市中学生睡眠时间,采用抽样调查D.了解某班同学的数学成绩,采用全面调查5.(3分)如图,四边形ABCD为⊙O的内接四边形,已知∠BCD为120°,则∠BOD的度数为(  )第21页(共21页) A.100°B.110°C.120°D.130°6.(3分)《孙子算经》中有一道题,原文是:今有三人共车,二车空;二人共车,九人步,问人与车各几何?译文为:今有若干人乘车,每3人共乘一车,最终剩余2辆车;若每2人共乘一车,最终剩余9个人无车可乘,问共有多少人,多少辆车?设共有x人,可列方程(  )A.﹣9B.+2=C.﹣2=D.+97.(3分)已知等腰三角形的两边长分别是一元二次方程x2﹣6x+8=0的两根,则该等腰三角形的底边长为(  )A.2B.4C.8D.2或48.(3分)如图所示,过y轴正半轴上的任意一点P,作x轴的平行线,分别与反比例函数y=﹣和y=的图象交于点A和点B,若点C是x轴上任意一点,连接AC,BC,则△ABC的面积为(  )A.6B.7C.8D.14二、填空题(本大题共6个小题,每小题3分,满分18分)9.(3分)因式分解:x2﹣9=  .10.(3分)今年夏季我国南方多地连降暴雨,引发了严重的洪涝灾害,给国家和人民的财产造成了严重的损失,为支持地方各级政府组织群众进行抗灾自救,国家发展改革委员会下达了211000000元救灾应急资金支持暴雨洪涝灾区用于抗洪救灾,则211000000元用科学记数法表示为  元.11.(3分)如图,∠AOB的一边OA为平面镜,∠AOB=38°,一束光线(与水平线OB第21页(共21页) 平行)从点C射入经平面镜反射后,反射光线落在OB上的点E处,则∠DEB的度数是  度.12.(3分)新学期开学,刚刚组建的七年级(1)班有男生30人,女生24人,欲从该班级中选出一名值日班长,任何人都有同样的机会,则这班选中一名男生当值日班长的概率是  .13.(3分)如图,正方形ABCD的边长为1,将其绕顶点C按逆时针方向旋转一定角度到CEFG位置,使得点B落在对角线CF上,则阴影部分的面积是  .14.(3分)观察下面的变化规律:=1﹣,=﹣,=﹣,=﹣,…根据上面的规律计算:=  .三、解答题(本大题共9个小题,满分0分.请考生用黑色碳素笔在答题卡相应的题号后的答题区域内作答,必须写出运算步骤、推理过程或文字说明,超出答题区域的作答无效)15.计算:|1﹣|﹣2sin45°+(3.14﹣π)0﹣()﹣2.16.如图,在矩形ABCD中,过对角线BD的中点O作BD的垂线EF,分别交AD,BC于点E,F.(1)求证:△DOE≌△BOF;(2)若AB=6,AD=8,连接BE,DF,求四边形BFDE的周长.第21页(共21页) 17.先化简,再求值:(﹣)÷,其中x=.18.为保障学生的身心健康和生命安全,政府和教育职能部门开展“安全知识进校园”宣传活动.为了调查学生对安全知识的掌握情况,从某中学随机抽取40名学生进行了相关知识测试,将成绩(成绩取整数)分为“A:69分及以下,B:70~79分,C:80~89分,D:90~100分”四个等级进行统计,得到如图未画完整的统计图:D组成绩的具体情况是:分数(分)9395979899人数(人)23521根据以上图表提供的信息,解答下列问题:(1)请补全条形统计图;(2)D组成绩的中位数是  分;(3)假设该校有1200名学生都参加此次测试,若成绩80分以上(含80分)为优秀,则该校成绩优秀的学生人数约有多少人?19.今年疫情防控期间,某学校花2000元购买了一批消毒液以满足全体师生的需要.随着疫情的缓解以及各种抗疫物资供应更充足,消毒液每瓶下降了2元,学校又购买了一批消毒液,花1600元购买到的数量与第一次购买到的数量相等,求第一批购进的消毒液的单价.20.阅读下面的材料:第21页(共21页) 对于实数a,b,我们定义符号min{a,b}的意义为:当a<b时,min{a,b}=a;当a≥b时,min{a,b}=b,如:min{4,﹣2}=﹣2,min{5,5}=5.根据上面的材料回答下列问题:(1)min{﹣1,3}=  ;(2)当min时,求x的取值范围.21.“南天一柱”是张家界“三千奇峰”中的一座,位于世界自然遗产武陵源风景名胜区袁家界景区南端.2010年1月25日,“南天一柱”正式命名为《阿凡达》的“哈利路亚山”.如图,航拍无人机以9m/s的速度在空中向正东方向飞行,拍摄云海中的“南天一柱”美景.在A处测得“南天一柱”底部C的俯角为37°,继续飞行6s到达B处,这时测得“南天一柱”底部C的俯角为45°,已知“南天一柱”的高为150m,问这架航拍无人机继续向正东飞行是否安全?(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)22.如图,在Rt△ABC中,∠ACB=90°,以AB为直径作⊙O,过点C作直线CD交AB的延长线于点D,使∠BCD=∠A.(1)求证:CD为⊙O的切线;(2)若DE平分∠ADC,且分别交AC,BC于点E,F,当CE=2时,求EF的长.23.如图,抛物线y=ax2﹣6x+c交x轴于A,B两点,交y轴于点C.直线y=﹣x+5经过点B,C.(1)求抛物线的解析式;(2)抛物线的对称轴l与直线BC相交于点P,连接AC,AP,判定△APC的形状,并说明理由;第21页(共21页) (3)在直线BC上是否存在点M,使AM与直线BC的夹角等于∠ACB的2倍?若存在,请求出点M的坐标;若不存在,请说明理由.第21页(共21页) 2020年湖南省张家界市中考数学试卷参考答案与试题解析一、选择题(本大题共8个小题,每小题3分,满分24分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)的倒数是(  )A.﹣B.C.2020D.﹣2020【解答】解:的倒数是2020,故选:C.2.(3分)如图是由5个完全相同的小正方体组成的立体图形,则它的主视图是(  )A.B.C.D.【解答】解:从正面看有三列,从左到右依次有2、1、1个正方形,图形如下:故选:A.3.(3分)下列计算正确的是(  )A.2a+3a=5a2B.(a2)3=a5C.(a+1)2=a2+1D.(a+2)(a﹣2)=a2﹣4【解答】解:A、2a+3a=5a,故原式错误;B、(a2)3=a6,故原式错误;C、(a+1)2=a2+2a+1,故原式错误;第21页(共21页) D、(a+2)(a﹣2)=a2﹣4,故原式正确,故选:D.4.(3分)下列采用的调查方式中,不合适的是(  )A.了解澧水河的水质,采用抽样调查B.了解一批灯泡的使用寿命,采用全面调查C.了解张家界市中学生睡眠时间,采用抽样调查D.了解某班同学的数学成绩,采用全面调查【解答】解:了解澧水河的水质,采用普查不太可能做到,所以采用抽样调查,故A合适,了解一批灯泡的使用寿命,不宜采用全面调查,因为调查带有破坏性,故B不合适,了解张家界市中学生睡眠时间,工作量大,宜采用抽样调查,故C合适,了解某班同学的数学成绩,采用全面调查.合适,故D合适,故选:B.5.(3分)如图,四边形ABCD为⊙O的内接四边形,已知∠BCD为120°,则∠BOD的度数为(  )A.100°B.110°C.120°D.130°【解答】解:∵四边形ABCD是⊙O的内接四边形,∴∠A=180°﹣∠BCD=60°,由圆周角定理得,∠BOD=2∠A=120°,故选:C.6.(3分)《孙子算经》中有一道题,原文是:今有三人共车,二车空;二人共车,九人步,问人与车各几何?译文为:今有若干人乘车,每3人共乘一车,最终剩余2辆车;若每2人共乘一车,最终剩余9个人无车可乘,问共有多少人,多少辆车?设共有x人,可列方程(  )第21页(共21页) A.﹣9B.+2=C.﹣2=D.+9【解答】解:依题意,得:+2=.故选:B.7.(3分)已知等腰三角形的两边长分别是一元二次方程x2﹣6x+8=0的两根,则该等腰三角形的底边长为(  )A.2B.4C.8D.2或4【解答】解:x2﹣6x+8=0(x﹣4)(x﹣2)=0解得:x=4或x=2,当等腰三角形的三边为2,2,4时,不符合三角形三边关系定理,此时不能组成三角形;当等腰三角形的三边为2,4,4时,符合三角形三边关系定理,此时能组成三角形,此时三角形的底边长为2,故选:A.8.(3分)如图所示,过y轴正半轴上的任意一点P,作x轴的平行线,分别与反比例函数y=﹣和y=的图象交于点A和点B,若点C是x轴上任意一点,连接AC,BC,则△ABC的面积为(  )A.6B.7C.8D.14【解答】解:∵AB∥x轴,且△ABC与△ABO共底边AB,∴△ABC的面积等于△ABO的面积,连接OA、OB,如下图所示:第21页(共21页) 则=.故选:B.二、填空题(本大题共6个小题,每小题3分,满分18分)9.(3分)因式分解:x2﹣9= (x+3)(x﹣3) .【解答】解:原式=(x+3)(x﹣3),故答案为:(x+3)(x﹣3).10.(3分)今年夏季我国南方多地连降暴雨,引发了严重的洪涝灾害,给国家和人民的财产造成了严重的损失,为支持地方各级政府组织群众进行抗灾自救,国家发展改革委员会下达了211000000元救灾应急资金支持暴雨洪涝灾区用于抗洪救灾,则211000000元用科学记数法表示为 2.11×108 元.【解答】解:211000000的小数点向左移动8位得到2.11,所以211000000用科学记数法表示为2.11×108,故答案为:2.11×108.11.(3分)如图,∠AOB的一边OA为平面镜,∠AOB=38°,一束光线(与水平线OB平行)从点C射入经平面镜反射后,反射光线落在OB上的点E处,则∠DEB的度数是 76 度.【解答】解:∵DC∥OB,∴∠ADC=∠AOB=38°,由光线的反射定理易得,∠ODE=∠ACD=38°,∠DEB=∠ODE+∠AOB=38°+38°=76°,故答案为:76°.第21页(共21页) 12.(3分)新学期开学,刚刚组建的七年级(1)班有男生30人,女生24人,欲从该班级中选出一名值日班长,任何人都有同样的机会,则这班选中一名男生当值日班长的概率是  .【解答】解:全班共有学生30+24=54(人),其中男生30人,则这班选中一名男生当值日班长的概率是=.故答案为:.13.(3分)如图,正方形ABCD的边长为1,将其绕顶点C按逆时针方向旋转一定角度到CEFG位置,使得点B落在对角线CF上,则阴影部分的面积是  .【解答】解:过E点作MN∥BC交AB、CD于M、N点,设AB与EF交于点P点,连接CP,如下图所示,∵B在对角线CF上,∴∠DCE=∠ECF=45°,EC=1,∴△ENC为等腰直角三角形,∴MB=CN=EC=,又BC=AD=CD=CE,且CP=CP,△PEC和△PBC均为直角三角形,∴Rt△PEC≌Rt△PBC(HL),∴PB=PE,第21页(共21页) 又∠PFB=45°,∴∠FPB=45°=∠MPE,∴△MPE为等腰直角三角形,设MP=x,则EP=BP=,∵MP+BP=MB,∴,解得,∴BP=,∴阴影部分的面积=.故答案为:.14.(3分)观察下面的变化规律:=1﹣,=﹣,=﹣,=﹣,…根据上面的规律计算:=  .【解答】解:由题干信息可抽象出一般规律:(a,b均为奇数,且b=a+2).故=1﹣+﹣+﹣+…+﹣=1﹣=.故答案:.三、解答题(本大题共9个小题,满分0分.请考生用黑色碳素笔在答题卡相应的题号后的答题区域内作答,必须写出运算步骤、推理过程或文字说明,超出答题区域的作答无效)15.计算:|1﹣|﹣2sin45°+(3.14﹣π)0﹣()﹣2.【解答】解:原式=﹣1﹣2×+1﹣4=﹣1﹣+1﹣4=﹣4.16.如图,在矩形ABCD中,过对角线BD的中点O作BD的垂线EF,分别交AD,BC第21页(共21页) 于点E,F.(1)求证:△DOE≌△BOF;(2)若AB=6,AD=8,连接BE,DF,求四边形BFDE的周长.【解答】(1)证明:∵四边形ABCD是矩形,∴AD∥BC,DO=BO,∴∠EDO=∠FBO,又∵EF⊥BD,∴∠EOD=∠FOB=90°,在△DOE和△BOF中,,∴△DOE≌△BOF(ASA);(2)解:∵由(1)可得,ED∥BF,ED=BF,∴四边形BFDE是平行四边形,∵BO=DO,EF⊥BD,∴ED=EB,∴四边形BFDE是菱形,根据AB=6,AD=8,设AE=x,可得BE=ED=8﹣x,在Rt△ABE中,根据勾股定理可得:BE2=AB2+AE2,即(8﹣x)2=x2+62,解得:,∴,∴四边形BFDE的周长=.第21页(共21页) 17.先化简,再求值:(﹣)÷,其中x=.【解答】解:(﹣)÷====,当时,原式==1.18.为保障学生的身心健康和生命安全,政府和教育职能部门开展“安全知识进校园”宣传活动.为了调查学生对安全知识的掌握情况,从某中学随机抽取40名学生进行了相关知识测试,将成绩(成绩取整数)分为“A:69分及以下,B:70~79分,C:80~89分,D:90~100分”四个等级进行统计,得到如图未画完整的统计图:D组成绩的具体情况是:分数(分)9395979899人数(人)23521根据以上图表提供的信息,解答下列问题:(1)请补全条形统计图;(2)D组成绩的中位数是 97 分;(3)假设该校有1200名学生都参加此次测试,若成绩80分以上(含80分)为优秀,则该校成绩优秀的学生人数约有多少人?第21页(共21页) 【解答】解:(1)C的人数为:40﹣(5+12+13)=40﹣30=10,补全条形统计图如右图所示:(2)D组共有13名学生,按照从小到大的顺序排列是:93、93、95、95、95、97、97、97、97、97、98、98、99,第七个数据为中位数,是97,故答案为:97;(3)1200×=690(人),即该校成绩优秀的学生人数约有690人,故答案为:690人.19.今年疫情防控期间,某学校花2000元购买了一批消毒液以满足全体师生的需要.随着疫情的缓解以及各种抗疫物资供应更充足,消毒液每瓶下降了2元,学校又购买了一批消毒液,花1600元购买到的数量与第一次购买到的数量相等,求第一批购进的消毒液的单价.【解答】解:设第一批购进的消毒液的单价为x元,则第二批购进的消毒液的单价为(x﹣2)元,第21页(共21页) 依题意,得:=,解得:x=10,经检验,x=10是原方程的解,且符合题意.答:第一批购进的消毒液的单价为10元.20.阅读下面的材料:对于实数a,b,我们定义符号min{a,b}的意义为:当a<b时,min{a,b}=a;当a≥b时,min{a,b}=b,如:min{4,﹣2}=﹣2,min{5,5}=5.根据上面的材料回答下列问题:(1)min{﹣1,3}= ﹣1 ;(2)当min时,求x的取值范围.【解答】解:(1)由题意得min{﹣1,3}=﹣1;故答案为:﹣1;(2)由题意得:3(2x﹣3)≥2(x+2)6x﹣9≥2x+44x≥13x≥,∴x的取值范围为x≥.21.“南天一柱”是张家界“三千奇峰”中的一座,位于世界自然遗产武陵源风景名胜区袁家界景区南端.2010年1月25日,“南天一柱”正式命名为《阿凡达》的“哈利路亚山”.如图,航拍无人机以9m/s的速度在空中向正东方向飞行,拍摄云海中的“南天一柱”美景.在A处测得“南天一柱”底部C的俯角为37°,继续飞行6s到达B处,这时测得“南天一柱”底部C的俯角为45°,已知“南天一柱”的高为150m,问这架航拍无人机继续向正东飞行是否安全?(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)第21页(共21页) 【解答】解:设无人机距地面xm,直线AB与南天一柱相交于点D,由题意得∠CAD=37°,∠CBD=45°.在Rt△ACD中,∵tan∠CAD=,∴AD=.在Rt△BCD中,∵tan∠CBD=,∴BD=x.∵AD﹣BD=AB,∴﹣x=9×6,∴x=162,∵162>150,∴这架航拍无人机继续向正东飞行安全.22.如图,在Rt△ABC中,∠ACB=90°,以AB为直径作⊙O,过点C作直线CD交AB的延长线于点D,使∠BCD=∠A.(1)求证:CD为⊙O的切线;(2)若DE平分∠ADC,且分别交AC,BC于点E,F,当CE=2时,求EF的长.第21页(共21页) 【解答】(1)证明:如图,连接OC,∵AB为⊙O的直径,∴∠ACB=90°,即∠A+∠ABC=90°,又∵OC=OB,∴∠ABC=∠OCB,∵∠BCD=∠A,∴∠BCD+∠OCB=90°,即∠OCD=90°,∵OC是圆O的半径,∴CD是⊙O的切线;(2)解:∵DE平分∠ADC,∴∠CDE=∠ADE,又∵∠BCD=∠A,∴∠A+∠ADE=∠BCD+∠CDF,即∠CEF=∠CFE,∵∠ACB=90°,CE=2,∴CE=CF=2,∴EF=.23.如图,抛物线y=ax2﹣6x+c交x轴于A,B两点,交y轴于点C.直线y=﹣x+5经过点B,C.(1)求抛物线的解析式;(2)抛物线的对称轴l与直线BC相交于点P,连接AC,AP,判定△APC的形状,并说明理由;(3)在直线BC上是否存在点M,使AM与直线BC的夹角等于∠ACB的2倍?若存在,请求出点M的坐标;若不存在,请说明理由.第21页(共21页) 【解答】解:(1)∵直线y=﹣x+5经过点B,C,∴当x=0时,可得y=5,即C的坐标为(0,5).当y=0时,可得x=5,即B的坐标为(5,0).∴.解得.∴该抛物线的解析式为y=x2﹣6x+5;(2)△APC的为直角三角形,理由如下:∵解方程x2﹣6x+5=0,则x1=1,x2=5.∴A(1,0),B(5,0).∵抛物线y=x2﹣6x+5的对称轴l为x=3,∴△APB为等腰三角形.∵C的坐标为(5,0),B的坐标为(5,0),∴OB=CO=5,即∠ABP=45°.∴∠ABP=45°.∴∠APB=180°﹣45°﹣45°=90°.∴∠APC=180°﹣90°=90°.∴△APC的为直角三角形;(3)如图:作AN⊥BC于N,NH⊥x轴于H,作AC的垂直平分线交BC于M1,AC于E,第21页(共21页) ∵M1A=M1C,∴∠ACM1=∠CAM1.∴∠AM1B=2∠ACB.∵△ANB为等腰直角三角形.∴AH=BH=NH=2.∴N(3,2).设AC的函数解析式为y=kx+b(k≠0).∵C(0,5),A(1,0),∴.解得b=5,k=﹣5.∴AC的函数解析式为y=﹣5x+5,设EM1的函数解析式为y=x+n,∵点E的坐标为().∴=×+n,解得:n=.∴EM1的函数解析式为y=x+.∵.第21页(共21页) 解得.∴M1的坐标为();在直线BC上作点M1关于N点的对称点M2,设M2(a,﹣a+5),则有:3=,解得a=.∴﹣a+5=.∴M2的坐标为(,).综上,存在使AM与直线BC的夹角等于∠ACB的2倍的点,且坐标为M1(),M2(,).声明:试题解析著作权属菁优网所有,未经书面同意,不得复制发布日期:2020/7/2710:26:16;用户:柯瑞;邮箱:ainixiaoke00@163.com;学号:500557第21页(共21页)

10000+的老师在这里下载备课资料