2020年湖南省岳阳市中考数学试卷
加入VIP免费下载

2020年湖南省岳阳市中考数学试卷

ID:895977

大小:409 B

页数:22页

时间:2022-02-26

加入VIP免费下载
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天资源网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:403074932
资料简介
2020年湖南省岳阳市中考数学试卷一、选择题(本大题共8小题,每小题3分,满分24分,在每道小题给出的四个选项中,选出符合要求的一项)1.(3分)﹣2020的相反数是(  )A.﹣2020B.2020C.﹣D.2.(3分)2019年以来,我国扶贫攻坚取得关键进展,农村贫困人口减少11090000人,数据11090000用科学记数法表示为(  )A.0.1109×108B.11.09×106C.1.109×108D.1.109×1073.(3分)如图,由4个相同正方体组成的几何体,它的左视图是(  )A.B.C.D.4.(3分)下列运算结果正确的是(  )A.(﹣a)3=a3B.a9÷a3=a3C.a+2a=3aD.a•a2=a25.(3分)如图,DA⊥AB,CD⊥DA,∠B=56°,则∠C的度数是(  )A.154°B.144°C.134°D.124°6.(3分)今年端午小长假复课第一天,学校根据疫情防控要求,对所有进入校园的师生进行体温检测,其中7名学生的体温(单位:℃)如下:36.5,36.3,36.8,36.3,36.5,36.7,36.5,这组数据的众数和中位数分别是(  )A.36.3,36.5B.36.5,36.5C.36.5,36.3D.36.3,36.77.(3分)下列命题是真命题的是(  )A.一个角的补角一定大于这个角B.平行于同一条直线的两条直线平行C.等边三角形是中心对称图形D.旋转改变图形的形状和大小第22页(共22页) 8.(3分)对于一个函数,自变量x取c时,函数值y等于0,则称c为这个函数的零点.若关于x的二次函数y=﹣x2﹣10x+m(m≠0)有两个不相等的零点x1,x2(x1<x2),关于x的方程x2+10x﹣m﹣2=0有两个不相等的非零实数根x3,x4(x3<x4),则下列关系式一定正确的是(  )A.0<<1B.>1C.0<<1D.>1二、填空题(本大题共8个小题,每小题4分,满分32分)9.(4分)因式分解:a2﹣9=  .10.(4分)函数y=中自变量x的取值范围是  .11.(4分)不等式组的解集是  .12.(4分)如图,在Rt△ABC中,CD是斜边AB上的中线,∠A=20°,则∠BCD=  °.13.(4分)在﹣3,﹣2,1,2,3五个数中随机选取一个数作为二次函数y=ax2+4x﹣2中a的值,则该二次函数图象开口向上的概率是  .14.(4分)已知x2+2x=﹣1,则代数式5+x(x+2)的值为  .15.(4分)我国古代数学名著《九章算术》上有这样一个问题:“今有醇酒一斗,直钱五十;行酒一斗,直钱一十.今将钱三十,得酒二斗.问醇、行酒各得几何?”其大意是:今有醇酒(优质酒)1斗,价值50钱;行酒(劣质酒)1斗,价值10钱.现用30钱,买得2斗酒.问醇酒、行酒各能买得多少?设醇酒为x斗,行酒为y斗,根据题意,可列方程组为  .16.(4分)如图,AB为半圆O的直径,M,C是半圆上的三等分点,AB=8,BD与半圆O相切于点B.点P为上一动点(不与点A,M重合),直线PC交BD于点D,BE⊥OC于点E,延长BE交PC于点F,则下列结论正确的是  .(写出所有正确结论的序号)①PB=PD;②的长为π;③∠DBE=45°;④△BCF∽△PFB;⑤CF•CP第22页(共22页) 为定值.三、解答题(本大题共8小题,满分64分,解答应写出必要的文字说明、证明过程或演算步骤)17.(6分)计算:()﹣1+2cos60°﹣(4﹣π)0+|﹣|.18.(6分)如图,点E,F在▱ABCD的边BC,AD上,BE=BC,FD=AD,连接BF,DE.求证:四边形BEDF是平行四边形.19.(8分)如图,一次函数y=x+5的图象与反比例函数y=(k为常数且k≠0)的图象相交于A(﹣1,m),B两点.(1)求反比例函数的表达式;(2)将一次函数y=x+5的图象沿y轴向下平移b个单位(b>0),使平移后的图象与反比例函数y=的图象有且只有一个交点,求b的值.20.(8分)我市某学校落实立德树人根本任务,构建“五育并举”教育体系,开设了“厨艺、园艺、电工、木工、编织”五大类劳动课程.为了解七年级学生对每类课程的选择情况,随机抽取了七年级若干名学生进行调查(每人只选一类最喜欢的课程),将调查结果绘制成如图两幅不完整的统计图:第22页(共22页) (1)本次随机调查的学生人数为  人;(2)补全条形统计图;(3)若该校七年级共有800名学生,请估计该校七年级学生选择“厨艺”劳动课程的人数;(4)七(1)班计划在“园艺、电工、木工、编织”四大类劳动课程中任选两类参加学校期末展示活动,请用列表或画树状图的方法,求恰好选中“园艺、编织”这两类劳动课程的概率.21.(8分)为做好复工复产,某工厂用A、B两种型号机器人搬运原料,已知A型机器人比B型机器人每小时多搬运20kg,且A型机器人搬运1200kg所用时间与B型机器人搬运1000kg所用时间相等,求这两种机器人每小时分别搬运多少原料.22.(8分)共抓长江大保护,建设水墨丹青新岳阳,推进市中心城区污水系统综合治理项目,需要从如图A,B两地向C地新建AC,BC两条笔直的污水收集管道,现测得C地在A地北偏东45°方向上,在B地北偏西68°向上,AB的距离为7km,求新建管道的总长度.(结果精确到0.1km,sin22°≈0.37,cos22°≈0.93,tan22°≈0.40,≈1.41)23.(10分)如图1,在矩形ABCD中,AB=6,BC=8,动点P,Q分别从C点,A第22页(共22页) 点同时以每秒1个单位长度的速度出发,且分别在边CA,AB上沿C→A,A→B的方向运动,当点Q运动到点B时,P,Q两点同时停止运动.设点P运动的时间为t(s),连接PQ,过点P作PE⊥PQ,PE与边BC相交于点E,连接QE.(1)如图2,当t=5s时,延长EP交边AD于点F.求证:AF=CE;(2)在(1)的条件下,试探究线段AQ,QE,CE三者之间的等量关系,并加以证明;(3)如图3,当t>s时,延长EP交边AD于点F,连接FQ,若FQ平分∠AFP,求的值.24.(10分)如图1所示,在平面直角坐标系中,抛物线F1:y=a(x﹣)2+与x轴交于点A(﹣,0)和点B,与y轴交于点C.(1)求抛物线F1的表达式;(2)如图2,将抛物线F1先向左平移1个单位,再向下平移3个单位,得到抛物线F2,若抛物线F1与抛物线F2相交于点D,连接BD,CD,BC.①求点D的坐标;②判断△BCD的形状,并说明理由;(3)在(2)的条件下,抛物线F2上是否存在点P,使得△BDP为等腰直角三角形,若存在,求出点P的坐标;若不存在,请说明理由.第22页(共22页) 第22页(共22页) 2020年湖南省岳阳市中考数学试卷参考答案与试题解析一、选择题(本大题共8小题,每小题3分,满分24分,在每道小题给出的四个选项中,选出符合要求的一项)1.(3分)﹣2020的相反数是(  )A.﹣2020B.2020C.﹣D.【解答】解:﹣2020的相反数是:2020.故选:B.2.(3分)2019年以来,我国扶贫攻坚取得关键进展,农村贫困人口减少11090000人,数据11090000用科学记数法表示为(  )A.0.1109×108B.11.09×106C.1.109×108D.1.109×107【解答】解:11090000=1.109×107,故选:D.3.(3分)如图,由4个相同正方体组成的几何体,它的左视图是(  )A.B.C.D.【解答】解:从该几何体的左侧看到的是一列两层,因此选项A的图形符合题意,故选:A.4.(3分)下列运算结果正确的是(  )A.(﹣a)3=a3B.a9÷a3=a3C.a+2a=3aD.a•a2=a2【解答】解:(﹣a)3=﹣a3,因此选项A不符合题意;a9÷a3=a9﹣3=a6,因此选项B不符合题意;a+2a=(1+2)a=3a,因此选项C符合题意;a•a2=a1+2=a3,因此选项D不符合题意;故选:C.5.(3分)如图,DA⊥AB,CD⊥DA,∠B=56°,则∠C的度数是(  )第22页(共22页) A.154°B.144°C.134°D.124°【解答】解:∵DA⊥AB,CD⊥DA,∴∠A=∠D=90°,∴∠A+∠D=180°,∴AB∥CD,∴∠B+∠C=180°,∵∠B=56°,∴∠C=180°﹣∠B=124°,故选:D.6.(3分)今年端午小长假复课第一天,学校根据疫情防控要求,对所有进入校园的师生进行体温检测,其中7名学生的体温(单位:℃)如下:36.5,36.3,36.8,36.3,36.5,36.7,36.5,这组数据的众数和中位数分别是(  )A.36.3,36.5B.36.5,36.5C.36.5,36.3D.36.3,36.7【解答】解:将这组数据重新排列为36.3,36.3,36.5,36.5,36.5,36.7,36.8,所以这组数据的众数为36.5,中位数为36.5,故选:B.7.(3分)下列命题是真命题的是(  )A.一个角的补角一定大于这个角B.平行于同一条直线的两条直线平行C.等边三角形是中心对称图形D.旋转改变图形的形状和大小【解答】解:A、一个角的补角不一定大于这个角,如直角的补角等于它,原命题是假命题;B、平行于同一条直线的两条直线平行,是真命题;C、等边三角形不是中心对称图形,原命题是假命题;D、旋转不改变图形的形状和大小,原命题是假命题;故选:B.第22页(共22页) 8.(3分)对于一个函数,自变量x取c时,函数值y等于0,则称c为这个函数的零点.若关于x的二次函数y=﹣x2﹣10x+m(m≠0)有两个不相等的零点x1,x2(x1<x2),关于x的方程x2+10x﹣m﹣2=0有两个不相等的非零实数根x3,x4(x3<x4),则下列关系式一定正确的是(  )A.0<<1B.>1C.0<<1D.>1【解答】解:由题意关于x的方程x2+10x﹣m﹣2=0有两个不相等的非零实数根x3,x4(x3<x4),就是关于x的二次函数y=﹣x2﹣10x+m(m≠0)与直线y=﹣2的交点的横坐标,画出函数的图象草图如下:∵抛物线的对称轴为直线x=﹣=﹣5,∴x3<x1<﹣5,由图象可知:0<<1一定成立,故选:A.二、填空题(本大题共8个小题,每小题4分,满分32分)9.(4分)因式分解:a2﹣9= (a+3)(a﹣3) .【解答】解:a2﹣9=(a+3)(a﹣3).10.(4分)函数y=中自变量x的取值范围是 x≥2 .【解答】解:依题意,得x﹣2≥0,解得:x≥2,故答案为:x≥2.第22页(共22页) 11.(4分)不等式组的解集是 ﹣3≤x<1 .【解答】解:解不等式x+3≥0,得:x≥﹣3,解不等式x﹣1<0,得:x<1,则不等式组的解集为﹣3≤x<11,故答案为:﹣3≤x<1.12.(4分)如图,在Rt△ABC中,CD是斜边AB上的中线,∠A=20°,则∠BCD= 70 °.【解答】解:在Rt△ABC中,CD是斜边AB上的中线,∠A=20°,则∠B=70°,∵∠ACB=90°,CD是斜边AB上的中线,∴BD=CD=AD,∴∠BCD=∠B=70°,故答案为70.13.(4分)在﹣3,﹣2,1,2,3五个数中随机选取一个数作为二次函数y=ax2+4x﹣2中a的值,则该二次函数图象开口向上的概率是  .【解答】解:∵从﹣3,﹣2,1,2,3五个数中随机选取一个数,共有5种等可能结果,其中使该二次函数图象开口向上的有1、2、3这3种结果,∴该二次函数图象开口向上的概率是,故答案为:.14.(4分)已知x2+2x=﹣1,则代数式5+x(x+2)的值为 4 .【解答】解:∵x2+2x=﹣1,∴5+x(x+2)=5+x2+2x=5﹣1=4.故答案为:4.15.(4分)我国古代数学名著《九章算术》上有这样一个问题:“今有醇酒一斗,直钱五十;行酒一斗,直钱一十.今将钱三十,得酒二斗.问醇、行酒各得几何?”第22页(共22页) 其大意是:今有醇酒(优质酒)1斗,价值50钱;行酒(劣质酒)1斗,价值10钱.现用30钱,买得2斗酒.问醇酒、行酒各能买得多少?设醇酒为x斗,行酒为y斗,根据题意,可列方程组为  .【解答】解:依题意,得:.故答案为:.16.(4分)如图,AB为半圆O的直径,M,C是半圆上的三等分点,AB=8,BD与半圆O相切于点B.点P为上一动点(不与点A,M重合),直线PC交BD于点D,BE⊥OC于点E,延长BE交PC于点F,则下列结论正确的是 ②④⑤ .(写出所有正确结论的序号)①PB=PD;②的长为π;③∠DBE=45°;④△BCF∽△PFB;⑤CF•CP为定值.【解答】解:①连接AC,并延长AC,与BD的延长线交于点H,如图1,∵M,C是半圆上的三等分点,∴∠BAH=30°,∵BD与半圆O相切于点B.∴∠ABD=90°,∴∠H=60°,∵∠ACP=∠ABP,∠ACP=∠DCH,∴∠PDB=∠H+∠DCH=∠ABP+60°,∵∠PBD=90°﹣∠ABP,若∠PDB=∠PBD,则∠ABP+60°=90°﹣∠ABP,∴∠ABP=15°,∴P点为的中点,这与P为上的一动点不完全吻合,∴∠PDB不一定等于∠ABD,∴PB不一定等于PD,第22页(共22页) 故①错误;②∵M,C是半圆上的三等分点,∴∠BOC=,∵直径AB=8,∴OB=OC=4,∴的长度=,故②正确;③∵∠BOC=60°,OB=OC,∴∠ABC=60°,OB=OC=BC,∵BE⊥OC,∴∠OBE=∠CBE=30°,∵∠ABD=90°,∴∠DBE=60°,故③错误;④∵M、N是的三等分点,∴∠BPC=30°,∵∠CBF=30°,∴∠CBF=∠CPB,∵∠BCF=∠PCF,∴△BCF∽△PCB,故④正确;⑤∵△BCF∽△PCB,∴,∴CF•CP=CB2,第22页(共22页) ∵,∴CF•CP=16,故⑤正确.故答案为:②④⑤.三、解答题(本大题共8小题,满分64分,解答应写出必要的文字说明、证明过程或演算步骤)17.(6分)计算:()﹣1+2cos60°﹣(4﹣π)0+|﹣|.【解答】解:原式=2+2×﹣1+=2+1﹣1+=2+.18.(6分)如图,点E,F在▱ABCD的边BC,AD上,BE=BC,FD=AD,连接BF,DE.求证:四边形BEDF是平行四边形.【解答】解:∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∵BE=BC,FD=AD,∴BE=DF,∵DF∥BE,∴四边形BEDF是平行四边形.19.(8分)如图,一次函数y=x+5的图象与反比例函数y=(k为常数且k≠0)的图象相交于A(﹣1,m),B两点.(1)求反比例函数的表达式;(2)将一次函数y=x+5的图象沿y轴向下平移b个单位(b>0),使平移后的图象与反比例函数y=的图象有且只有一个交点,求b的值.第22页(共22页) 【解答】解:(1)∵一次函数y=x+5的图象与反比例函数y=(k为常数且k≠0)的图象相交于A(﹣1,m),∴m=4,∴k=﹣1×4=﹣4,∴反比例函数解析式为:y=﹣;(2)∵一次函数y=x+5的图象沿y轴向下平移b个单位(b>0),∴y=x+5﹣b,∵平移后的图象与反比例函数y=的图象有且只有一个交点,∴x+5﹣b=﹣,∴x2+(5﹣b)x+4=0,∵△=(5﹣b)2﹣16=0,解得b=9或1,答:b的值为9或1.20.(8分)我市某学校落实立德树人根本任务,构建“五育并举”教育体系,开设了“厨艺、园艺、电工、木工、编织”五大类劳动课程.为了解七年级学生对每类课程的选择情况,随机抽取了七年级若干名学生进行调查(每人只选一类最喜欢的课程),将调查结果绘制成如图两幅不完整的统计图:第22页(共22页) (1)本次随机调查的学生人数为 60 人;(2)补全条形统计图;(3)若该校七年级共有800名学生,请估计该校七年级学生选择“厨艺”劳动课程的人数;(4)七(1)班计划在“园艺、电工、木工、编织”四大类劳动课程中任选两类参加学校期末展示活动,请用列表或画树状图的方法,求恰好选中“园艺、编织”这两类劳动课程的概率.【解答】解:(1)18÷30%=60(人),故答案为:60;(2)60﹣15﹣18﹣9﹣6=12(人),补全条形统计图如图所示:(3)800×=200(人),答:该校七年级800名学生中选择“厨艺”劳动课程的有200人;(4)用列表法表示所有可能出现的结果如下:共有12种可能出现的结果,其中选中“园艺、编织”的有2种,∴P(园艺、编织)==.21.(8分)为做好复工复产,某工厂用A、B两种型号机器人搬运原料,已知A型机器人比B型机器人每小时多搬运20kg,且A型机器人搬运1200kg所用时间与B型机器人搬运1000kg所用时间相等,求这两种机器人每小时分别搬运多少原料.第22页(共22页) 【解答】解:设B型机器人每小时搬运xkg原料,则A型机器人每小时搬运(x+20)kg原料,依题意,得:=,解得:x=100,经检验,x=100是原方程的解,且符合题意,∴x+20=120.答:A型机器人每小时搬运120kg原料,B型机器人每小时搬运100kg原料.22.(8分)共抓长江大保护,建设水墨丹青新岳阳,推进市中心城区污水系统综合治理项目,需要从如图A,B两地向C地新建AC,BC两条笔直的污水收集管道,现测得C地在A地北偏东45°方向上,在B地北偏西68°向上,AB的距离为7km,求新建管道的总长度.(结果精确到0.1km,sin22°≈0.37,cos22°≈0.93,tan22°≈0.40,≈1.41)【解答】解:如图,过点C作CD⊥AB于点D,根据题意可知:AB=7,∠ACD=45°,∠CBD=90°﹣68°=22°,∴AD=CD,∴BD=AB﹣AD=7﹣CD,第22页(共22页) 在Rt△BCD中,∵tan∠CBD=,∴≈0.40,∴CD=2,∴AD=CD=2,BD=7﹣2=5,∴AC=2≈2.83,BC=≈≈5.41,∴AC+BC≈2.83+5.41≈8.2(km).答:新建管道的总长度约为8.2km.23.(10分)如图1,在矩形ABCD中,AB=6,BC=8,动点P,Q分别从C点,A点同时以每秒1个单位长度的速度出发,且分别在边CA,AB上沿C→A,A→B的方向运动,当点Q运动到点B时,P,Q两点同时停止运动.设点P运动的时间为t(s),连接PQ,过点P作PE⊥PQ,PE与边BC相交于点E,连接QE.(1)如图2,当t=5s时,延长EP交边AD于点F.求证:AF=CE;(2)在(1)的条件下,试探究线段AQ,QE,CE三者之间的等量关系,并加以证明;(3)如图3,当t>s时,延长EP交边AD于点F,连接FQ,若FQ平分∠AFP,求的值.【解答】解:(1)∵四边形ABCD是矩形,∴AD∥BC,∠ABC=90°,在Rt△ABC中,AB=6,BC=8,根据勾股定理得,AC=10,由运动知,CP=t=5,∴AP=AC﹣CP=5,第22页(共22页) ∴AP=CP,∵AD∥BC,∴∠PAF=∠PCE,∠AFP=∠CEP,∴△APF≌△CPE(AAS),∴AF=CE;(2)结论:AQ2+CE2=QE2,理由:如图2,连接FQ,由(1)知,△APF≌△CPE,∴AF=CE,PE=PF,∵EF⊥PQ,∴QE=QF,在Rt△QAF中,根据勾股定理得,AQ2+AF2=QF2,∴AQ2+CE2=QE2;(3)如图3,由运动知,AQ=t,CP=t,∴AP=AC﹣CP=10﹣t,∵FQ平分∠AFE,∴∠AFC=∠PFQ,∵∠FAQ=∠FPQ=90°,FQ=FQ,∴△FAQ≌△FPQ(AAS),∴AQ=PQ=t,AF=PF,∴BQ=AB﹣AQ=6﹣t,∠FAC=∠FPA,∵∠DAC=∠ACB,∠APF=∠CPE,∴∠ACB=∠CPE,∴PE=CE,过点E作EN⊥AC于N,∴CN=CP=t,∠CNE=90°=∠ABC,∵∠NCE=∠BCA,第22页(共22页) ∴△CNE∽△CBA,∴,∴,∴CE=t,∴PE=t,BE=BC﹣CE=8﹣t,在Rt△QPE中,QE2=PQ2+PE2,在Rt△BQE中,QE2=BQ2+BE2,∴PQ2+PE2=BQ2+BE2,∴t2+(t)2=(6﹣t)2+(8﹣t)2,∴t=,∴CP=t=,∴AP=10﹣CP=,∵AD∥BC,∴△APF∽△CPE,∴==.第22页(共22页) 24.(10分)如图1所示,在平面直角坐标系中,抛物线F1:y=a(x﹣)2+与x轴交于点A(﹣,0)和点B,与y轴交于点C.(1)求抛物线F1的表达式;(2)如图2,将抛物线F1先向左平移1个单位,再向下平移3个单位,得到抛物线F2,若抛物线F1与抛物线F2相交于点D,连接BD,CD,BC.①求点D的坐标;②判断△BCD的形状,并说明理由;(3)在(2)的条件下,抛物线F2上是否存在点P,使得△BDP为等腰直角三角形,若存在,求出点P的坐标;若不存在,请说明理由.【解答】解:(1)把点A(﹣,0)代入抛物线F1:y=a(x﹣)2+中得:0=a(﹣﹣)2+,解得:a=﹣,∴抛物线F1:y=﹣(x﹣)2+;(2)①由平移得:抛物线F2:y=﹣(x﹣+1)2+﹣3,∴y=﹣(x+)2+,∴(x+)2+=﹣(x﹣)2+,﹣x=,解得:x=﹣1,第22页(共22页) ∴D(﹣1,1);②当x=0时,y=﹣=4,∴C(0,4),当y=0时,﹣(x﹣)2+=0,解得:x=﹣或2,∴B(2,0),∵D(﹣1,1),∴BD2=(2+1)2+(1﹣0)2=10,CD2=(0+1)2+(4﹣1)2=10,BC2=22+42=20,∴BD2+CD2=BC2且BD=CD,∴△BDC是等腰直角三角形;(3)存在,设P[m,﹣],∵B(2,0),D(﹣1,1),∴BD2=(2+1)2+12=10,,,分三种情况:①当∠DBP=90°时,BD2+PB2=PD2,即10+(m﹣2)2+[﹣]2=(m+1)2+[﹣(m+)2+﹣1]2,解得:m=﹣4或1,当m=﹣4时,BD=,PB==6,即△BDP不是等腰直角三角形,不符合题意,当m=1时,BD=,PB==,∴BD=PB,即△BDP是等腰直角三角形,符合题意,∴P(1,﹣3);②当∠BDP=90°时,BD2+PD2=PB2,第22页(共22页) 即10+[﹣(m+)2+﹣1]2=(m﹣2)2+[﹣]2,解得:m=﹣1(舍)或﹣2,当m=﹣2时,BD=,PD==,∴BD=PD,即此时△BDP为等腰直角三角形,∴P(﹣2,﹣2);③当∠BPD=90°时,且BP=DP,有BD2=PD2+PB2,如图3,当△BDP为等腰直角三角形时,点P1和P2不在抛物线上,此种情况不存在这样的点P;综上,点P的坐标(1,﹣3)或(﹣2,﹣2).声明:试题解析著作权属菁优网所有,未经书面同意,不得复制发布日期:2020/7/2810:44:39;用户:柯瑞;邮箱:ainixiaoke00@163.com;学号:500557第22页(共22页)

10000+的老师在这里下载备课资料