2020年湖南省衡阳市中考数学试卷一、选择题(本大题共12个小题,每小题3分,满分36分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(3分)﹣3的相反数是( )A.3B.﹣3C.D.﹣2.(3分)下列各式中,计算正确的是( )A.a3+a2=a5B.a3﹣a2=aC.(a2)3=a5D.a2•a3=a53.(3分)2019年12月12日,国务院新闻办公室发布,南水北调工程全面通水5周年来,直接受益人口超过1.2亿人,其中1.2亿用科学记数法表示为( )A.1.2×108B.1.2×107C.1.2×109D.1.2×10﹣84.(3分)下列各式中正确的是( )A.﹣|﹣2|=2B.=±2C.=3D.30=15.(3分)下面的图形是用数学家名字命名的,其中既是轴对称图形又是中心对称图形的是( )A.赵爽弦图B.科克曲线C.笛卡尔心形线D.斐波那契螺旋线6.(3分)要使分式有意义,则x的取值范围是( )A.x>1B.x≠1C.x=1D.x≠07.(3分)如图,在四边形ABCD中,对角线AC和BD相交于点O,下列条件不能判断四边形ABCD是平行四边形的是( )A.AB∥DC,AD∥BCB.AB=DC,AD=BCC.AB∥DC,AD=BCD.OA=OC,OB=OD第22页(共22页)
8.(3分)下列不是三棱柱展开图的是( )A.B.C.D.9.(3分)不等式组的解集在数轴上表示正确的是( )A.B.C.D.10.(3分)反比例函数y=经过点(2,1),则下列说法错误的是( )A.k=2B.函数图象分布在第一、三象限C.当x>0时,y随x的增大而增大D.当x>0时,y随x的增大而减小11.(3分)如图,学校课外生物小组的试验园地的形状是长35米、宽20米的矩形.为便于管理,要在中间开辟一横两纵共三条等宽的小道,使种植面积为600平方米,则小道的宽为多少米?若设小道的宽为x米,则根据题意,列方程为( )A.35×20﹣35x﹣20x+2x2=600B.35×20﹣35x﹣2×20x=600C.(35﹣2x)(20﹣x)=600D.(35﹣x)(20﹣2x)=60012.(3分)如图1,在平面直角坐标系中,▱ABCD在第一象限,且BC∥x轴.直线y=x从原点O出发沿x轴正方向平移,在平移过程中,直线被▱ABCD截得的线段长度n与直线在x轴上平移的距离m的函数图象如图2所示.那么▱ABCD的面积为( )第22页(共22页)
A.3B.3C.6D.6二、填空题(本大题共6个小题,每小题3分,满分18分.)13.(3分)因式分解:a2+a= .14.(3分)计算:﹣x= .15.(3分)已知一个n边形的每一个外角都为30°,则n等于 .16.(3分)一副三角板如图摆放,且AB∥CD,则∠1的度数为 .17.(3分)某班有52名学生,其中男生人数是女生人数的2倍少17人,则女生有 名.18.(3分)如图,在平面直角坐标系中,点P1的坐标为(,),将线段OP1绕点O按顺时针方向旋转45°,再将其长度伸长为OP1的2倍,得到线段OP2;又将线段OP2绕点O按顺时针方向旋转45°,长度伸长为OP2的2倍,得到线段OP3;如此下去,得到线段OP4,OP5,…,OPn(n为正整数),则点P2020的坐标是 .三、解答题(木大题共8个小题,19~20题每题6分,21~24题每题8分,25题10分,26题12分,满分66分.解答应写出文字说明、证明过程或演算步骤.)第22页(共22页)
19.(6分)化简:b(a+b)+(a+b)(a﹣b).20.(6分)一个不透明的盒子里装有除颜色外其余均相同的2个黑球和n个白球,搅匀后从盒子里随机摸出一个球,摸到白球的概率为.(1)求n的值;(2)所有球放入盒中,搅匀后随机从中摸出1个球,放回搅匀,再随机摸出第2个球,求两次摸球摸到一个白球和一个黑球的概率.请用画树状图或列表的方法进行说明.21.(8分)如图,在△ABC中,∠B=∠C,过BC的中点D作DE⊥AB,DF⊥AC,垂足分别为点E、F.(1)求证:DE=DF;(2)若∠BDE=40°,求∠BAC的度数.22.(8分)病毒虽无情,人间有大爱.2020年,在湖北省抗击新冠病毒的战“疫”中,全国(除湖北省外)共有30个省(区、市)及军队的医务人员在党中央全面部署下,白衣执甲,前赴后继支援湖北省.全国30个省(区、市)各派出支援武汉的医务人员频数分布直方图(不完整)和扇形统计图如下:(数据分成6组:100≤x<500,500≤x<900,900≤x<1300,1300≤x<1700,1700≤x<2100,2100≤x<2500.根据以上信息回答问题:(1)补全频数分布直方图.第22页(共22页)
(2)求扇形统计图中派出人数大于等于100小于500所占圆心角度数.据新华网报道,在支援湖北省的医务人员大军中,有“90后”也有“00后”,他们是青春的力量,时代的脊梁.小华在收集支援湖北省抗疫宣传资料时得到这样一组有关“90后”医务人员的数据:C市派出的1614名医护人员中有404人是“90后”;H市派出的338名医护人员中有103人是“90后”;B市某医院派出的148名医护人员中有83人是“90后”.(3)请你根据小华得到的这些数据估计在支援湖北省的全体医务人员(按4.2万人计)中,“90后”大约有多少万人?(写出计算过程,结果精确到0.1万人)23.(8分)小华同学将笔记本电脑水平放置在桌子上,当显示屏的边缘线OB与底板的边缘线OA所在水平线的夹角为120°时,感觉最舒适(如图①).侧面示意图为图②;使用时为了散热,他在底板下面垫入散热架,如图③,点B、O、C在同一直线上,OA=OB=24cm,BC⊥AC,∠OAC=30°.(1)求OC的长;(2)如图④,垫入散热架后,要使显示屏的边缘线OB'与水平线的夹角仍保持120°,求点B′到AC的距离.(结果保留根号)24.(8分)如图,在△ABC中,∠C=90°,AD平分∠BAC交BC于点D,过点A和点D的圆,圆心O在线段AB上,⊙O交AB于点E,交AC于点F.(1)判断BC与⊙O的位置关系,并说明理由;(2)若AD=8,AE=10,求BD的长.25.(10分)在平面直角坐标系xOy中,关于x的二次函数y=x2+px+q的图象过点(﹣1,0),(2,0).第22页(共22页)
(1)求这个二次函数的表达式;(2)求当﹣2≤x≤1时,y的最大值与最小值的差;(3)一次函数y=(2﹣m)x+2﹣m的图象与二次函数y=x2+px+q的图象交点的横坐标分别是a和b,且a<3<b,求m的取值范围.26.(12分)如图1,平面直角坐标系xOy中,等腰△ABC的底边BC在x轴上,BC=8,顶点A在y的正半轴上,OA=2,一动点E从(3,0)出发,以每秒1个单位的速度沿CB向左运动,到达OB的中点停止.另一动点F从点C出发,以相同的速度沿CB向左运动,到达点O停止.已知点E、F同时出发,以EF为边作正方形EFGH,使正方形EFGH和△ABC在BC的同侧,设运动的时间为t秒(t≥0).(1)当点H落在AC边上时,求t的值;(2)设正方形EFGH与△ABC重叠面积为S,请问是否存在t值,使得S=?若存在,求出t值;若不存在,请说明理由;(3)如图2,取AC的中点D,连结OD,当点E、F开始运动时,点M从点O出发,以每秒2个单位的速度沿OD﹣DC﹣CD﹣DO运动,到达点O停止运动.请问在点E的整个运动过程中,点M可能在正方形EFGH内(含边界)吗?如果可能,求出点M在正方形EFGH内(含边界)的时长;若不可能,请说明理由.第22页(共22页)
2020年湖南省衡阳市中考数学试卷参考答案与试题解析一、选择题(本大题共12个小题,每小题3分,满分36分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(3分)﹣3的相反数是( )A.3B.﹣3C.D.﹣【解答】解:﹣3的相反数是3.故选:A.2.(3分)下列各式中,计算正确的是( )A.a3+a2=a5B.a3﹣a2=aC.(a2)3=a5D.a2•a3=a5【解答】解:a3+a5不是同类项,它是一个多项式,因此A选项不符合题意;同上可得,选项B不符合题意;(a2)3=a2×3=a6,因此选项C不符合题意;a2•a3=a2+3=x5,因此选项D符合题意;故选:D.3.(3分)2019年12月12日,国务院新闻办公室发布,南水北调工程全面通水5周年来,直接受益人口超过1.2亿人,其中1.2亿用科学记数法表示为( )A.1.2×108B.1.2×107C.1.2×109D.1.2×10﹣8【解答】解:1.2亿=120000000=1.2×108.故选:A.4.(3分)下列各式中正确的是( )A.﹣|﹣2|=2B.=±2C.=3D.30=1【解答】解:A、﹣|﹣2|=﹣2,故此选项错误;B、=2,故此选项错误;C、≠3,故此选项错误;D、30=1,故此选项正确;故选:D.第22页(共22页)
5.(3分)下面的图形是用数学家名字命名的,其中既是轴对称图形又是中心对称图形的是( )A.赵爽弦图B.科克曲线C.笛卡尔心形线D.斐波那契螺旋线【解答】解:A、不是轴对称图形,是中心对称图形,故此选项不合题意;B、既是中心对称图形又是轴对称图形,故此选项符合题意;C、是轴对称图形,不是中心对称图形,故此选项不合题意;D、既不是轴对称图形,也不是中心对称图形,故此选项不合题意.故选:B.6.(3分)要使分式有意义,则x的取值范围是( )A.x>1B.x≠1C.x=1D.x≠0【解答】解:要使分式有意义,则x﹣1≠0,解得:x≠1.故选:B.7.(3分)如图,在四边形ABCD中,对角线AC和BD相交于点O,下列条件不能判断四边形ABCD是平行四边形的是( )A.AB∥DC,AD∥BCB.AB=DC,AD=BCC.AB∥DC,AD=BCD.OA=OC,OB=OD【解答】解:∵AB∥DC,AD∥BC,∴四边形ABCD是平行四边形,故选项A中条件可以判定四边形ABCD是平行四边形;∵AB=DC,AD=BC,∴四边形ABCD是平行四边形,故选项B中条件可以判定四边形ABCD是平行四边形;∵AB∥DC,AD=BC,则无法判断四边形ABCD是平行四边形,故选项C中的条件,不能判断四边形ABCD是平行四边形;第22页(共22页)
∵OA=OC,OB=OD,∴四边形ABCD是平行四边形,故选项D中条件可以判定四边形ABCD是平行四边形;故选:C.8.(3分)下列不是三棱柱展开图的是( )A.B.C.D.【解答】解:A、C、D中间三个长方形能围成三棱柱的侧面,上、下两个三角形围成三棱柱的上、下两底面,故均能围成三棱柱,均是三棱柱的表面展开图.B围成三棱柱时,两个三角形重合为同一底面,而另一底面没有.故C不能围成三棱柱.故选:B.9.(3分)不等式组的解集在数轴上表示正确的是( )A.B.C.D.【解答】解:,由①得x≤1,由②得x>﹣2,故不等式组的解集为﹣2<x≤1,在数轴上表示为:.故选:C.10.(3分)反比例函数y=经过点(2,1),则下列说法错误的是( )A.k=2B.函数图象分布在第一、三象限第22页(共22页)
C.当x>0时,y随x的增大而增大D.当x>0时,y随x的增大而减小【解答】解:∵反比例函数y=经过点(2,1),∴1=,解得,k=2,故选项A正确;∵k=2>0,∴该函数的图象在第一、三象限,故选项B正确;当x>0时,y随x的增大而减小,故选项C错误、选项D正确;故选:C.11.(3分)如图,学校课外生物小组的试验园地的形状是长35米、宽20米的矩形.为便于管理,要在中间开辟一横两纵共三条等宽的小道,使种植面积为600平方米,则小道的宽为多少米?若设小道的宽为x米,则根据题意,列方程为( )A.35×20﹣35x﹣20x+2x2=600B.35×20﹣35x﹣2×20x=600C.(35﹣2x)(20﹣x)=600D.(35﹣x)(20﹣2x)=600【解答】解:依题意,得:(35﹣2x)(20﹣x)=600.故选:C.12.(3分)如图1,在平面直角坐标系中,▱ABCD在第一象限,且BC∥x轴.直线y=x从原点O出发沿x轴正方向平移,在平移过程中,直线被▱ABCD截得的线段长度n与直线在x轴上平移的距离m的函数图象如图2所示.那么▱ABCD的面积为( )A.3B.3C.6D.6第22页(共22页)
【解答】解:过B作BM⊥AD于点M,分别过B,D作直线y=x的平行线,交AD于E,如图1所示,由图象和题意可得,AE=6﹣4=2,DE=7﹣6=1,BE=2,∴AB=2+1=3,∵直线BE平行直线y=x,∴BM=EM=,∴平行四边形ABCD的面积是:AD•BM=3×=3.故选:B.二、填空题(本大题共6个小题,每小题3分,满分18分.)13.(3分)因式分解:a2+a= a(a+1) .【解答】解:a2+a=a(a+1).故答案为:a(a+1).14.(3分)计算:﹣x= 1 .【解答】解:原式=﹣x=x+1﹣x=1.故答案为:1.15.(3分)已知一个n边形的每一个外角都为30°,则n等于 12 .【解答】解:∵一个n边形的每一个外角都为30°,任意多边形的外角和都是360°,∴n=360°÷30°=12.故答案为:12.16.(3分)一副三角板如图摆放,且AB∥CD,则∠1的度数为 105° .第22页(共22页)
【解答】解:如图,∵AB∥CD,∠D=45°,∴∠2=∠D=45°.∵∠1=∠2+∠3,∠3=60°,∴∠1=∠2+∠3=45°+60°=105°.故答案是:105°.17.(3分)某班有52名学生,其中男生人数是女生人数的2倍少17人,则女生有 23 名.【解答】解:设女生有x名,则男生人数有(2x﹣17)名,依题意有2x﹣17+x=52,解得x=23.故女生有23名.故答案为:23.18.(3分)如图,在平面直角坐标系中,点P1的坐标为(,),将线段OP1绕点O按顺时针方向旋转45°,再将其长度伸长为OP1的2倍,得到线段OP2;又将线段OP2绕点O按顺时针方向旋转45°,长度伸长为OP2的2倍,得到线段OP3;如此下去,得到线段OP4,OP5,…,OPn(n为正整数),则点P2020的坐标是 (0,﹣22019) .第22页(共22页)
【解答】解:∵点P1的坐标为(,),将线段OP1绕点O按逆时针方向旋转45°,再将其长度伸长为OP1的2倍,得到线段OP2;∴OP1=1,OP2=2,∴OP3=4,如此下去,得到线段OP4=23,OP5=24…,∴OPn=2n﹣1,由题意可得出线段每旋转8次旋转一周,∵2020÷8=252…4,∴点P2020的坐标与点P4的坐标在同一直线上,正好在y轴的负半轴上,∴点P2020的坐标是(0,﹣22019).故答案为:(0,﹣22019).三、解答题(木大题共8个小题,19~20题每题6分,21~24题每题8分,25题10分,26题12分,满分66分.解答应写出文字说明、证明过程或演算步骤.)19.(6分)化简:b(a+b)+(a+b)(a﹣b).【解答】解:b(a+b)+(a+b)(a﹣b)=ab+b2+a2﹣b2=ab+a2.20.(6分)一个不透明的盒子里装有除颜色外其余均相同的2个黑球和n个白球,搅匀后从盒子里随机摸出一个球,摸到白球的概率为.(1)求n的值;(2)所有球放入盒中,搅匀后随机从中摸出1个球,放回搅匀,再随机摸出第2个球,求两次摸球摸到一个白球和一个黑球的概率.请用画树状图或列表的方法进行说明.【解答】解:(1)由概率的意义可得,=,解得,n=1,第22页(共22页)
答:n的值为1;(2)用列表法表示所有可能出现的结果情况如下:共有9种可能出现的结果,其中两次摸球摸到一个白球和一个黑球有4种.∴P(一白一黑)=,21.(8分)如图,在△ABC中,∠B=∠C,过BC的中点D作DE⊥AB,DF⊥AC,垂足分别为点E、F.(1)求证:DE=DF;(2)若∠BDE=40°,求∠BAC的度数.【解答】(1)证明:∵DE⊥AB,DF⊥AC,∴∠BED=∠CFD=90°,∵D是BC的中点,∴BD=CD,在△BED与△CFD中,,∴△BED≌△CFD(AAS),∴DE=DF;(2)解:∵∠BDE=40°,∴∠B=50°,∴∠C=50°,∴∠BAC=80°.22.(8分)病毒虽无情,人间有大爱.2020年,在湖北省抗击新冠病毒的战“疫”第22页(共22页)
中,全国(除湖北省外)共有30个省(区、市)及军队的医务人员在党中央全面部署下,白衣执甲,前赴后继支援湖北省.全国30个省(区、市)各派出支援武汉的医务人员频数分布直方图(不完整)和扇形统计图如下:(数据分成6组:100≤x<500,500≤x<900,900≤x<1300,1300≤x<1700,1700≤x<2100,2100≤x<2500.根据以上信息回答问题:(1)补全频数分布直方图.(2)求扇形统计图中派出人数大于等于100小于500所占圆心角度数.据新华网报道,在支援湖北省的医务人员大军中,有“90后”也有“00后”,他们是青春的力量,时代的脊梁.小华在收集支援湖北省抗疫宣传资料时得到这样一组有关“90后”医务人员的数据:C市派出的1614名医护人员中有404人是“90后”;H市派出的338名医护人员中有103人是“90后”;B市某医院派出的148名医护人员中有83人是“90后”.(3)请你根据小华得到的这些数据估计在支援湖北省的全体医务人员(按4.2万人计)中,“90后”大约有多少万人?(写出计算过程,结果精确到0.1万人)【解答】解:(1)由直方图可得,1300≤x<1700,这一组的频数是:30﹣3﹣10﹣10﹣2﹣1=4,补全的频数分布直方图如右图所示;(2)360°×=36°,即扇形统计图中派出人数大于等于100小于500所占圆心角度数是36°;第22页(共22页)
(3)4.2×≈1.2(万人),答:在支援湖北省的全体医务人员(按4.2万人计)中,“90后”大约有1.2万人.23.(8分)小华同学将笔记本电脑水平放置在桌子上,当显示屏的边缘线OB与底板的边缘线OA所在水平线的夹角为120°时,感觉最舒适(如图①).侧面示意图为图②;使用时为了散热,他在底板下面垫入散热架,如图③,点B、O、C在同一直线上,OA=OB=24cm,BC⊥AC,∠OAC=30°.(1)求OC的长;(2)如图④,垫入散热架后,要使显示屏的边缘线OB'与水平线的夹角仍保持120°,求点B′到AC的距离.(结果保留根号)【解答】解:(1)如图③,在Rt△AOC中,OA=24,∠OAC=30°.∴OC=OA=×24=12(cm);(2)如图④,过点B′作B′D⊥AC,垂足为D,过点O作OE⊥B′D,垂足为E,由题意得,OA=OB′=24,当显示屏的边缘线OB'与水平线的夹角仍保持120°,看可得,∠AOB′=150°∴∠B′OE=60°,∵∠ACO=∠B′EO=90°,第22页(共22页)
∴在Rt△△B′OE中,B′E=OB′×sin60°=12,又∵OC=DE=12,∴B′D=B′E+DE=12+12,即:点B′到AC的距离为(12+12)cm.24.(8分)如图,在△ABC中,∠C=90°,AD平分∠BAC交BC于点D,过点A和点D的圆,圆心O在线段AB上,⊙O交AB于点E,交AC于点F.(1)判断BC与⊙O的位置关系,并说明理由;(2)若AD=8,AE=10,求BD的长.【解答】解:(1)BC与⊙O相切,理由:连接OD,∵OA=OD,∴∠OAD=∠ODA,∵AD平分∠BAC,∴∠BAD=∠CAD,∴∠ODA=∠CAD,∴OD∥AC,∵∠C=90°,∴∠ODC=90°,∴OD⊥BC,∵OD为半径,∴BC是⊙O切线;(2)连接DE,第22页(共22页)
∵AE是⊙O的直径,∴∠ADE=90°,∵∠C=90°,∴∠ADE=∠C,∵∠EAD=∠DAC,∴△ADE∽△ACD,∴=,=,∴AC=,∴CD===,∵OD⊥BC,AC⊥BC,∴△OBD∽△ABC,∴,∴=,∴BD=.25.(10分)在平面直角坐标系xOy中,关于x的二次函数y=x2+px+q的图象过点(﹣1,0),(2,0).(1)求这个二次函数的表达式;(2)求当﹣2≤x≤1时,y的最大值与最小值的差;(3)一次函数y=(2﹣m)x+2﹣m的图象与二次函数y=x2+px+q的图象交点的横坐标分别是a和b,且a<3<b,求m的取值范围.第22页(共22页)
【解答】解:(1)由二次函数y=x2+px+q的图象经过(﹣1,0)和(2,0)两点,∴,解得,∴此二次函数的表达式y=x2﹣x﹣2;(2)∵抛物线开口向上,对称轴为直线x==,∴在﹣2≤x≤1范围内,当x=﹣2,函数有最大值为:y=4+2﹣2=4;当x=是函数有最小值:y=﹣﹣2=﹣,∴的最大值与最小值的差为:4﹣(﹣)=;(3)∵y=(2﹣m)x+2﹣m与二次函数y=x2﹣x﹣2图象交点的横坐标为a和b,∴x2﹣x﹣2=(2﹣m)x+2﹣m,整理得x2+(m﹣3)x+m﹣4=0∵a<3<b∴a≠b∴△=(m﹣3)2﹣4×(m﹣4)=(m﹣5)2>0∴m≠5∵a<3<b当x=3时,(2﹣m)x+2﹣m>x2﹣x﹣2,把x=3代入(2﹣m)x+2﹣m>x2﹣x﹣2,解得m<1,∴m的取值范围为m<1.第22页(共22页)
26.(12分)如图1,平面直角坐标系xOy中,等腰△ABC的底边BC在x轴上,BC=8,顶点A在y的正半轴上,OA=2,一动点E从(3,0)出发,以每秒1个单位的速度沿CB向左运动,到达OB的中点停止.另一动点F从点C出发,以相同的速度沿CB向左运动,到达点O停止.已知点E、F同时出发,以EF为边作正方形EFGH,使正方形EFGH和△ABC在BC的同侧,设运动的时间为t秒(t≥0).(1)当点H落在AC边上时,求t的值;(2)设正方形EFGH与△ABC重叠面积为S,请问是否存在t值,使得S=?若存在,求出t值;若不存在,请说明理由;(3)如图2,取AC的中点D,连结OD,当点E、F开始运动时,点M从点O出发,以每秒2个单位的速度沿OD﹣DC﹣CD﹣DO运动,到达点O停止运动.请问在点E的整个运动过程中,点M可能在正方形EFGH内(含边界)吗?如果可能,求出点M在正方形EFGH内(含边界)的时长;若不可能,请说明理由.【解答】解:(1)如图1﹣1中,第22页(共22页)
由题意,OA=2,OB=OC=4,EF=EH=FG=HG=1,当点H落在AC上时,∵EH∥OA,∴=,∴=,∴CE=2,∴点E的运动路程为1,∴t=1时,点E落在AC上.(2)由题意,在E,F的运动过程中,开始正方形EFGH的边长为1,∵正方形EFGH与△ABC重叠面积为S,S=,∴此时点F与O重合,已经停止运动,如图1﹣2中,重叠部分是五边形OEKJG.由题意:(t﹣3)2﹣••(3t﹣13)=,整理得45t2﹣486t+1288=0,解得t=或(舍弃),∴满足条件的t的值为.第22页(共22页)
(3)如图3﹣1中,当点M第一次落在EH上时,4t+t=3,t=当点M第一次落在FG上时,4t+t=4,t=,∴点M第一次落在正方形内部(包括边界)的时长=﹣=(s),当点M第二次落在FG上时,4t﹣t=4,t=,当点M第二次落在EH上时,4t﹣(t+1)=4,t=,点M第二次落在正方形内部(包括边界)的时长=﹣=,∴点M落在正方形内部(包括边界)的总时长=+=(s).声明:试题解析著作权属菁优网所有,未经书面同意,不得复制发布日期:2020/7/2810:37:55;用户:柯瑞;邮箱:ainixiaoke00@163.com;学号:500557第22页(共22页)