2021年湖南省郴州市中考数学试卷
加入VIP免费下载

2021年湖南省郴州市中考数学试卷

ID:896002

大小:565 B

页数:30页

时间:2022-02-26

加入VIP免费下载
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天资源网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:403074932
资料简介
2021年湖南省郴州市中考数学试卷一、选择题(共8小题,每小题3分,共24分)1.(3分)实数a,b在数轴上的位置如图所示,则下列式子正确的是(  )A.a>bB.|a|>|b|C.ab>0D.a+b>02.(3分)下列垃圾分类图标分别表示:“可回收垃圾”、“有害垃圾”、“厨余垃圾”、“其它垃圾”,其中既是轴对称图形,又是中心对称图形的是(  )A.B.C.D.3.(3分)为响应习近平总书记“坚决打赢关键核心技术攻坚战”的号召,某科研团队最近攻克了7nm的光刻机难题,其中1nm=0.000000001m,则7nm用科学记数法表示为(  )A.0.7×108mB.7×10﹣8mC.0.7×10﹣8mD.7×10﹣9m4.(3分)下列运算正确的是(  )A.a2•a3=a6B.(a3)2=a5C.=3D.(a+b)2=a2+b25.(3分)下列说法正确的是(  )A.“明天下雨的概率为80%”,意味着明天有80%的时间下雨B.经过有信号灯的十字路口时,可能遇到红灯,也可能遇到绿灯C.“某彩票中奖概率是1%”,表示买100张这种彩票一定会有1张中奖D.小明前几次的数学测试成绩都在90分以上这次数学测试成绩也一定在90分以上6.(3分)已知二元一次方程组,则x﹣y的值为(  )A.2B.6C.﹣2D.﹣6第30页(共30页) 7.(3分)由5个相同的小立方体搭成的物体如图所示,则它的俯视图为(  )A.B.C.D.8.(3分)如图,在边长为4的菱形ABCD中,∠A=60°,点P从点A出发,沿路线A→B→C→D运动.设P点经过的路程为x,以点A,D,P为顶点的三角形的面积为y,则下列图象能反映y与x的函数关系的是(  )A.B.C.D.二、填空题(共8小题,每小题3分,共24分)9.(3分)使有意义的x的取值范围是  .10.(3分)在反比例函数y=的图象的每一支曲线上,函数值y随自变量x的增大而增大,则m的取值范围是  .第30页(共30页) 11.(3分)为庆祝中国共产党建党一百周年,某校开展了主题为“我身边的共产党员”的演讲比赛.比赛从演讲内容、演讲技巧、演讲效果三个方面打分,最终得分按4:3:3的比例计算.若选手甲在演讲内容、演讲技巧、演讲效果三个方面的得分分别为95分、80分、90分,则选手甲的最终得分为  分.12.(3分)一个多边形的每一个外角都等于60°,则这个多边形的内角和为  度.13.(3分)关于x的一元二次方程x2﹣5x+m=0有两个相等的实数根,则m=  .14.(3分)如图是一架梯子的示意图,其中AA1∥BB1∥CC1∥DD1,且AB=BC=CD.为使其更稳固,在A,D1间加绑一条安全绳(线段AD1)量得AE=0.4m,则AD1=  m.15.(3分)如图,方老师用一张半径为18cm的扇形纸板,做了一个圆锥形帽子(接缝忽略不计).如果圆锥形帽子的半径是10cm,那么这张扇形纸板的面积是  cm2(结果用含π的式子表示).16.(3分)如图,在△ABC中,AB=5,AC=4,sinA=,BD⊥AC交AC于点D.点P为线段BD上的动点,则PC+PB的最小值为  .第30页(共30页) 三、解答题(17~19题每题6分,20~23题每题8分,24~25题每题10分,26题12分,共82分)17.(6分)计算:(2021﹣π)0﹣|2﹣|+()﹣1•tan60°.18.(6分)先化简,再求值:(﹣)÷,其中a=.19.(6分)如图,四边形ABCD中,AB=DC,将对角线AC向两端分别延长至点E,F,使AE=CF.连接BE,DF,若BE=DF.证明:四边形ABCD是平行四边形.20.(8分)我市为加快推进生活垃圾分类工作,对分类垃圾桶实行统一的外型、型号、颜色等,其中,可回收物用蓝色收集桶,有害垃圾用红色收集桶,厨余垃圾用绿色收集桶,其他垃圾用灰色收集桶.为了解学生对垃圾分类知识的掌握情况,某校宣传小组就“用过的餐巾纸应投放到哪种颜色的收集桶”在全校随机采访了部分学生,根据调查结果,绘制了如图所示的两幅不完整的统计图.第30页(共30页) 根据图中信息,解答下列问题:(1)此次调查一共随机采访了  名学生,在扇形统计图中,“灰”所在扇形的圆心角的度数为  度;(2)补全条形统计图(要求在条形图上方注明人数);(3)若该校有3600名学生,估计该校学生将用过的餐巾纸投放到红色收集桶的人数;(4)李老师计划从A,B,C,D四位学生中随机抽取两人参加学校的垃圾分类知识抢答赛,请用树状图法或列表法求出恰好抽中A,B两人的概率.21.(8分)如图,莽山五指峰景区新建了一座垂直观光电梯.某测绘兴趣小组为测算电梯AC的高度,测得斜坡AB=105米,坡度i=1:2,在B处测得电梯顶端C的仰角α=45°,求观光电梯AC的高度.(参考数据:≈1.41,≈1.73,≈2.24.结果精确到0.1米)22.(8分)“七•一”建党节前夕,某校决定购买A,B两种奖品,用于表彰在“童心向党”活动中表现突出的学生.已知A奖品比B奖品每件多25元,预算资金为1700元,其中800元购买A奖品,其余资金购买B奖品,且购买B奖品的数量是A奖品的3倍.第30页(共30页) (1)求A,B奖品的单价;(2)购买当日,正逢该店搞促销活动,所有商品均按原价八折销售,故学校调整了购买方案:不超过预算资金且购买A奖品的资金不少于720元,A,B两种奖品共100件,求购买A,B两种奖品的数量,有哪几种方案?23.(8分)如图,△ABC是⊙O的内接三角形,AC是⊙O的直径,点D是的中点,DE∥BC交AC的延长线于点E.(1)求证:直线DE与⊙O相切;(2)若⊙O的直径是10,∠A=45°,求CE的长.24.(10分)某商店从厂家以每件2元的价格购进一批商品,在市场试销中发现,此商品的月销售量y(单位:万件)与销售单价x(单位元)之间有如下表所示关系:x…4.05.05.56.57.5…y…8.06.05.03.01.0…(1)根据表中的数据,在如图中描出实数对(x,y)所对应的点,并画出y关于x的函数图象;(2)根据画出的函数图象,求出y关于x的函数表达式;第30页(共30页) (3)设经营此商品的月销售利润为P(单位:万元),①写出P关于x的函数表达式;②该商店计划从这批商品获得的月销售利润为10万元(不计其它成本),若物价局限定商品的销售单价不得超过进价的200%,则此时的销售单价应定为多少元?25.(10分)如图1,在等腰直角三角形ABC中,∠BAC=90°,点E,F分别为AB,AC的中点,H为线段EF上一动点(不与点E,F重合),将线段AH绕点A逆时针方向旋转90°得到AG,连接GC,HB.(1)证明:△AHB≌△AGC;(2)如图2,连接GF,HG,HG交AF于点Q.①证明:在点H的运动过程中,总有∠HFG=90°;②若AB=AC=4,当EH的长度为多少时△AQG为等腰三角形?26.(12分)将抛物线y=ax2(a≠0)向左平移1个单位,再向上平移4个单位后,得到抛物线H:y=a(x﹣h)2+k.抛物线H与x轴交于点A,B,与y轴交于点C.已知A(﹣3,0),点P是抛物线H上的一个动点.(1)求抛物线H的表达式;(2)如图1,点P在线段AC上方的抛物线H上运动(不与A,C重合),过点P作PD⊥AB,垂足为D,PD交AC于点E.作PF⊥AC,垂足为F,求△PEF的面积的最大值;(3)如图2,点Q是抛物线H的对称轴l上的一个动点,在抛物线H上,是否存在点P,使得以点A,P,C,Q为顶点的四边形是平行四边形?若存在,求出所有符合条件的点P的坐标;若不存在,说明理由.第30页(共30页) 第30页(共30页) 2021年湖南省郴州市中考数学试卷参考答案与试题解析一、选择题(共8小题,每小题3分,共24分)1.(3分)实数a,b在数轴上的位置如图所示,则下列式子正确的是(  )A.a>bB.|a|>|b|C.ab>0D.a+b>0【解答】解:A.∵a<0,b>0,∴a<b,故A项不符合题意;B.由数轴可知|a|>|b|,故B项符合题意;C.∵a<0,b>0,∴ab<0,故C项不符合题意;D.∵a<0,b>0,|a|>|b|,∴a+b<0,故D项不符合题意.故选:B.2.(3分)下列垃圾分类图标分别表示:“可回收垃圾”、“有害垃圾”、“厨余垃圾”、“其它垃圾”,其中既是轴对称图形,又是中心对称图形的是(  )A.B.C.D.【解答】解:A.既不是轴对称图形,也不是中心对称图形.故本选项不合题意;B.既是轴对称图形,又是中心对称图形.故本选项符合题意;C.是轴对称图形,不是中心对称图形.故本选项不合题意;D.既不是轴对称图形,也不是中心对称图形.故本选项不合题意.故选:B.3.(3分)为响应习近平总书记“坚决打赢关键核心技术攻坚战”的号召,某科研团队最近攻克了7nm的光刻机难题,其中1nm=0.000000001m,则7nm用科学记数法表示为(  )A.0.7×108mB.7×10﹣8mC.0.7×10﹣8mD.7×10﹣9m第30页(共30页) 【解答】解:∵1nm=0.000000001m,∴7nm=7×10﹣9m.故选:D.4.(3分)下列运算正确的是(  )A.a2•a3=a6B.(a3)2=a5C.=3D.(a+b)2=a2+b2【解答】解:A.x2•x3=x5,故A选项不符合题意;B.(a3)2=a6,故B选项不符合题意;C.,故C选项符合题意;D.(a+b)2=a2+2ab+b2,故D选项不符合题意;故选:C.5.(3分)下列说法正确的是(  )A.“明天下雨的概率为80%”,意味着明天有80%的时间下雨B.经过有信号灯的十字路口时,可能遇到红灯,也可能遇到绿灯C.“某彩票中奖概率是1%”,表示买100张这种彩票一定会有1张中奖D.小明前几次的数学测试成绩都在90分以上这次数学测试成绩也一定在90分以上【解答】解:A.明天下雨的概率为80%,只是说明明天下雨的可能性大,与时间无关,故本选项不符合题意;B.经过有信号灯的十字路口时,可能遇到红灯,也可能遇到绿灯,故本选项符合题意;C.某彩票中奖概率是1%,买100张这种彩票中奖是随机事件,不一定会有1张中奖,故本选项不符合题意;D.小明前几次的数学测试成绩都在90分以上这次数学测试成绩不一定在90分以上,故本选项不符合题意.故选:B.6.(3分)已知二元一次方程组,则x﹣y的值为(  )A.2B.6C.﹣2D.﹣6【解答】解:,①+②,得3x﹣3y=6,第30页(共30页) 两边都除以3得:x﹣y=2,故选:A.7.(3分)由5个相同的小立方体搭成的物体如图所示,则它的俯视图为(  )A.B.C.D.【解答】解:该组合体的俯视图如下:故选:D.8.(3分)如图,在边长为4的菱形ABCD中,∠A=60°,点P从点A出发,沿路线A→B→C→D运动.设P点经过的路程为x,以点A,D,P为顶点的三角形的面积为y,则下列图象能反映y与x的函数关系的是(  )A.B.第30页(共30页) C.D.【解答】解:过点B作BE⊥AD于点E,如图所示:边长为4的菱形,ABCD中,∠A=60°,∴AB=AD=BC=4,∴∠ABE=30°,∴AE=2,BE=2,当点P从点A运动到点B时,过点P作PF⊥AD于点F,则AP=x,AF=x,PF=x,S△ADP=•AD•PF=•x=x,∴△ADP的面积逐渐增大;当在线段BC上时,S△ADP=•AD•BE=×2=4,∴△ADP的面积保持不变;当点P在线段CD上时,如图,过点P作PM⊥AD交AD的延长线于点M,第30页(共30页) 则AB+BC+CP=x,则DP=12﹣x,DM=6﹣x,PM=DM=6﹣x,S△ADP=•AD•PM=×(6﹣x)=12﹣x,∴△ADP的面积逐渐减小.故选:A.二、填空题(共8小题,每小题3分,共24分)9.(3分)使有意义的x的取值范围是 x>0 .【解答】解:使有意义,则≥0且x≠0,解得:x>0.故答案为:x>0.10.(3分)在反比例函数y=的图象的每一支曲线上,函数值y随自变量x的增大而增大,则m的取值范围是 m<3 .【解答】解:比例函数y=图象上的每一条曲线上,y随x的增大而增大,∴m﹣3<0,∴m<3.故答案为:m<3.11.(3分)为庆祝中国共产党建党一百周年,某校开展了主题为“我身边的共产党员”的演讲比赛.比赛从演讲内容、演讲技巧、演讲效果三个方面打分,最终得分按4:3:3的比例计算.若选手甲在演讲内容、演讲技巧、演讲效果三个方面的得分分别为95分、80分、90分,则选手甲的最终得分为 89 分.【解答】解:选手甲的最终得分为:==89(分).故答案为:89.12.(3分)一个多边形的每一个外角都等于60°,则这个多边形的内角和为 720 度.第30页(共30页) 【解答】解:∵多边形的每一个外角都等于60°,∴它的边数为:360°÷60°=6,∴它的内角和:180°×(6﹣2)=720°,故答案为:720.13.(3分)关于x的一元二次方程x2﹣5x+m=0有两个相等的实数根,则m=  .【解答】解:∵关于x的一元二次方程x2﹣5x+m=0有两个相等的实数根,∴Δ=b2﹣4ac=25﹣4m=0,解得:m=.故答案为:.14.(3分)如图是一架梯子的示意图,其中AA1∥BB1∥CC1∥DD1,且AB=BC=CD.为使其更稳固,在A,D1间加绑一条安全绳(线段AD1)量得AE=0.4m,则AD1= 1.2 m.【解答】解:∵BB1∥CC1,∴=,∵AB=BC,∴AE=EF,同理可得:AE=EF=FD1,∵AE=0.4m,∴AD1=0.4×3=1.2(m),故答案为:1.2.15.(3分)如图,方老师用一张半径为18cm的扇形纸板,做了一个圆锥形帽子(接缝忽略不计).如果圆锥形帽子的半径是10cm,那么这张扇形纸板的面积是 180π cm2(结果用含π的式子表示).第30页(共30页) 【解答】解:这张扇形纸板的面积=×2π×10×18=180π(cm2).故答案为180π.16.(3分)如图,在△ABC中,AB=5,AC=4,sinA=,BD⊥AC交AC于点D.点P为线段BD上的动点,则PC+PB的最小值为  .【解答】解:过点P作PD⊥AB于点D,过点C作CH⊥AB于点H,∵BD⊥AC,∴∠ADB=90°,∵sinA==,AB=5,∴BD=4,由勾股定理得AD=,第30页(共30页) ∴sin∠ABD=,∴DP=,∴PC+PB=PC+PD,即点C、P、D三点共线时,PC+PB最小,∴PC+PB的最小值为CH的长,∵S△ABC=,∴4×4=5×CH,∴CH=.∴PC+PB的最小值为.故答案为:.三、解答题(17~19题每题6分,20~23题每题8分,24~25题每题10分,26题12分,共82分)17.(6分)计算:(2021﹣π)0﹣|2﹣|+()﹣1•tan60°.【解答】解:原式=1﹣(2﹣2)+2×=1﹣2+2+2=3.18.(6分)先化简,再求值:(﹣)÷,其中a=.【解答】解:(﹣)÷=[﹣]•(a﹣1)=•(a﹣1)=•(a﹣1)=•(a﹣1)=,第30页(共30页) 当a=时,原式==.19.(6分)如图,四边形ABCD中,AB=DC,将对角线AC向两端分别延长至点E,F,使AE=CF.连接BE,DF,若BE=DF.证明:四边形ABCD是平行四边形.【解答】证明:在△BEA和△DFC中,∴△BEA≌△DFC(SSS),∴∠EAB=∠FCD,∴∠BAC=∠DCA,∴AB∥DC,∵AB=DC,∴四边形ABCD是平行四边形.20.(8分)我市为加快推进生活垃圾分类工作,对分类垃圾桶实行统一的外型、型号、颜色等,其中,可回收物用蓝色收集桶,有害垃圾用红色收集桶,厨余垃圾用绿色收集桶,其他垃圾用灰色收集桶.为了解学生对垃圾分类知识的掌握情况,某校宣传小组就“用过的餐巾纸应投放到哪种颜色的收集桶”在全校随机采访了部分学生,根据调查结果,绘制了如图所示的两幅不完整的统计图.第30页(共30页) 根据图中信息,解答下列问题:(1)此次调查一共随机采访了 200 名学生,在扇形统计图中,“灰”所在扇形的圆心角的度数为 198 度;(2)补全条形统计图(要求在条形图上方注明人数);(3)若该校有3600名学生,估计该校学生将用过的餐巾纸投放到红色收集桶的人数;(4)李老师计划从A,B,C,D四位学生中随机抽取两人参加学校的垃圾分类知识抢答赛,请用树状图法或列表法求出恰好抽中A,B两人的概率.【解答】解:(1)此次调查一共随机采访学生44÷22%=200(名),在扇形统计图中,“灰”所在扇形的圆心角的度数为360°×=198°,故答案为:200,198;(2)绿色部分的人数为200﹣(16+44+110)=30(人),补全图形如下:(3)估计该校学生将用过的餐巾纸投放到红色收集桶的人数3600×=288(人);第30页(共30页) (4)列表如下:ABCDA(B,A)(C,A)(D,A)B(A,B)(C,B)(D,B)C(A,C)(B,C)(D,C)D(A,D)(B,D)(C,D)由表格知,共有12种等可能结果,其中恰好抽中A,B两人的有2种结果,所以恰好抽中A,B两人的概率为=.21.(8分)如图,莽山五指峰景区新建了一座垂直观光电梯.某测绘兴趣小组为测算电梯AC的高度,测得斜坡AB=105米,坡度i=1:2,在B处测得电梯顶端C的仰角α=45°,求观光电梯AC的高度.(参考数据:≈1.41,≈1.73,≈2.24.结果精确到0.1米)【解答】解:过B作BM⊥水平地面于M,BN⊥AC于N,如图所示:则四边形AMBN是矩形,∴AN=BM,BN=MA,∵斜坡AB=105米,坡度i=1:2=,∴设BM=x米,则AM=2x米,∴AB===x=105,∴x=21,∴AN=BM=21(米),BN=AM=42(米),在Rt△BCN中,∠CBN=α=45°,第30页(共30页) ∴△BCN是等腰直角三角形,∴AN=BN=42(米),∴AC=AN+CN=21+42=63≈141.1(米),答:观光电梯AC的高度约为141.1米.22.(8分)“七•一”建党节前夕,某校决定购买A,B两种奖品,用于表彰在“童心向党”活动中表现突出的学生.已知A奖品比B奖品每件多25元,预算资金为1700元,其中800元购买A奖品,其余资金购买B奖品,且购买B奖品的数量是A奖品的3倍.(1)求A,B奖品的单价;(2)购买当日,正逢该店搞促销活动,所有商品均按原价八折销售,故学校调整了购买方案:不超过预算资金且购买A奖品的资金不少于720元,A,B两种奖品共100件,求购买A,B两种奖品的数量,有哪几种方案?【解答】解:(1)设A奖品的单价为x元,则B奖品的单价为(x﹣25)元,由题意得:=,解得:x=40,经检验,x=40是原方程的解,则x﹣25=15,答:A奖品的单价为40元,则B奖品的单价为15元;(2)设购买A种奖品的数量为m件,则购买B种奖品的数量为(100﹣m)件,由题意得:,解得:22.5≤m≤25,∵m为正整数,∴m的值为23,24,25,第30页(共30页) ∴有三种方案:①购买A种奖品23件,B种奖品77件;②购买A种奖品24件,B种奖品76件;③购买A种奖品25件,B种奖品75件.23.(8分)如图,△ABC是⊙O的内接三角形,AC是⊙O的直径,点D是的中点,DE∥BC交AC的延长线于点E.(1)求证:直线DE与⊙O相切;(2)若⊙O的直径是10,∠A=45°,求CE的长.【解答】(1)证明:连接OD,如图,∵点D是的中点,∴OD⊥BC,∵DE∥BC,∴OD⊥DE,∴直线DE与⊙O相切;(2)解:∵AC是⊙O的直径,∴∠B=90°,∵∠A=45°,∴∠ACB=45°,∵BC∥DE,∴∠E=45°,而∠ODE=90°,∴△ODE为等腰直角三角形,∴OE=OD=5,∴CE=OE﹣OC=5﹣5.第30页(共30页) 24.(10分)某商店从厂家以每件2元的价格购进一批商品,在市场试销中发现,此商品的月销售量y(单位:万件)与销售单价x(单位元)之间有如下表所示关系:x…4.05.05.56.57.5…y…8.06.05.03.01.0…(1)根据表中的数据,在如图中描出实数对(x,y)所对应的点,并画出y关于x的函数图象;(2)根据画出的函数图象,求出y关于x的函数表达式;(3)设经营此商品的月销售利润为P(单位:万元),①写出P关于x的函数表达式;②该商店计划从这批商品获得的月销售利润为10万元(不计其它成本),若物价局限定商品的销售单价不得超过进价的200%,则此时的销售单价应定为多少元?【解答】解:(1)第30页(共30页) (2)根据图象设y=kx+b,把(4.0,8.0)和(5.0,6.0)代入上式,得,解得,∴y=﹣2x+16,∵y≥0,∴﹣2x+16≥0,解得x≤8,∴y关于x的函数表达式为y=﹣2x+16(x≤8);(3)①P=(x﹣2)y=(x﹣2)(﹣2x+16)=﹣2x2+20x﹣32,即P与x的函数表达式为:P=﹣2x2+20x﹣32(x≤8);②∵物价局限定商品的销售单价不得超过进价的200%,∴x≤2×200%,即x≤4,由题意得P=10,∴﹣2x²+20x﹣32=10,解得x1=3,x2=7,∵x≤4,∴此时销售单价为3元.第30页(共30页) 25.(10分)如图1,在等腰直角三角形ABC中,∠BAC=90°,点E,F分别为AB,AC的中点,H为线段EF上一动点(不与点E,F重合),将线段AH绕点A逆时针方向旋转90°得到AG,连接GC,HB.(1)证明:△AHB≌△AGC;(2)如图2,连接GF,HG,HG交AF于点Q.①证明:在点H的运动过程中,总有∠HFG=90°;②若AB=AC=4,当EH的长度为多少时△AQG为等腰三角形?【解答】(1)证明:如图1,由旋转得:AH=AG,∠HAG=90°,∵∠BAC=90°,∴∠BAH=∠CAG,∵AB=AC,∴△ABH≌△ACG(SAS);(2)①证明:如图2,在等腰直角三角形ABC中,∠BAC=90°,第30页(共30页) ∴∠ABC=∠ACB=45°,∵点E,F分别为AB,AC的中点,∴EF是△ABC的中位线,∴EF∥BC,AE=AB,AF=AC,∴AE=AF,∠AEF=∠ABC=45°,∠AFE=∠ACB=45°,∵∠EAH=∠FAG,AH=AG,∴△AEH≌△AFG(SAS),∴∠AFG=∠AEH=45°,∴∠HFG=45°+45°=90°;②分两种情况:i)如图3,AQ=QG时,∵AQ=QG,∴∠QAG=∠AGQ,∵∠HAG=∠HAQ+∠QAG=∠AHG+∠AGH=90°,∴∠QAH=∠AHQ,∴AQ=QH=QG,∵AH=AG,∴AQ⊥GH,∵∠AFG=∠AFH=45°,第30页(共30页) ∴∠FGQ=∠FHQ=45°,∴∠HFG=∠AGF=∠AHF=90°,∴四边形AHFG是正方形,∵AC=4,∴AF=2,∴FG=EH=,∴当EH的长度为时,△AQG为等腰三角形;ii)如图4,当AG=QG时,∠GAQ=∠AQG,∵∠AEH=∠AGQ=45°,∠EAH=∠GAQ,∴∠AHE=∠AQG=∠EAH,∴EH=AE=2,∴当EH的长度为2时,△AQG为等腰三角形;综上,当EH的长度为或2时,△AQG为等腰三角形.26.(12分)将抛物线y=ax2(a≠0)向左平移1个单位,再向上平移4个单位后,得到抛物线H:y=a(x﹣h)2+k.抛物线H与x轴交于点A,B,与y轴交于点C.已知A(﹣3,0),点P是抛物线H上的一个动点.(1)求抛物线H的表达式;(2)如图1,点P在线段AC上方的抛物线H上运动(不与A,C重合),过点P作PD⊥AB,垂足为D,PD交AC于点E.作PF⊥AC,垂足为F,求△PEF的面积的最大值;(3)如图2,点Q是抛物线H的对称轴l上的一个动点,在抛物线H上,是否存在点P,使得以点A,P,C,Q为顶点的四边形是平行四边形?若存在,求出所有符合条件的点P的坐标;若不存在,说明理由.第30页(共30页) 【解答】解:(1)由题意得抛物线的顶点坐标为(﹣1,4),∴抛物线H:y=a(x+1)2+4,将A(﹣3,0)代入,得:a(﹣3+1)2+4=0,解得:a=﹣1,∴抛物线H的表达式为y=﹣(x+1)2+4;(2)如图1,由(1)知:y=﹣x2﹣2x+3,令x=0,得y=3,∴C(0,3),设直线AC的解析式为y=mx+n,∵A(﹣3,0),C(0,3),∴,解得:,∴直线AC的解析式为y=x+3,设P(m,﹣m2﹣2m+3),则E(m,m+3),∴PE=﹣m2﹣2m+3﹣(m+3)=﹣m2﹣3m=﹣(m+)2+,∵﹣1<0,∴当m=﹣时,PE有最大值,∵OA=OC=3,∠AOC=90°,∴△AOC是等腰直角三角形,∴∠ACO=45°,∵PD⊥AB,第30页(共30页) ∴∠ADP=90°,∴∠ADP=∠AOC,∴PD∥OC,∴∠PEF=∠ACO=45°,∵PF⊥AC,∴△PEF是等腰直角三角形,∴PF=EF=PE,∴S△PEF=PE•EF=PE2,∴当m=﹣时,S△PEF最大值=×()2=;(3)①当AC为平行四边形的边时,则有PQ∥AC,且PQ=AC,如图2,过点P作对称轴的垂线,垂足为G,设AC交对称轴于点H,则∠AHG=∠ACO=∠PQG,在△PQG和△ACO中,,∴△PQG≌△ACO(AAS),∴PG=AO=3,∴点P到对称轴的距离为3,又∵y=﹣(x+1)2+4,∴抛物线对称轴为直线x=﹣1,设点P(x,y),则|x+1|=3,解得:x=2或x=﹣4,当x=2时,y=﹣5,当x=﹣4时,y=﹣5,∴点P坐标为(2,﹣5)或(﹣4,﹣5);②当AC为平行四边形的对角线时,如图3,设AC的中点为M,∵A(﹣3,0),C(0,3),第30页(共30页) ∴M(﹣,),∵点Q在对称轴上,∴点Q的横坐标为﹣1,设点P的横坐标为x,根据中点公式得:x+(﹣1)=2×(﹣)=﹣3,∴x=﹣2,此时y=3,∴P(﹣2,3);综上所述,点P的坐标为(2,﹣5)或(﹣4,﹣5)或(﹣2,3).第30页(共30页) 声明:试题解析著作权属菁优网所有,未经书面同意,不得复制发布日期:2021/8/413:55:02;用户:柯瑞;邮箱:ainixiaoke00@163.com;学号:500557第30页(共30页)

10000+的老师在这里下载备课资料