2022年江苏省新高考数学复习新题速递10月第3期(新高考专版)(解析版)
加入VIP免费下载

2022年江苏省新高考数学复习新题速递10月第3期(新高考专版)(解析版)

ID:937634

大小:549.12 KB

页数:11页

时间:2022-03-07

加入VIP免费下载
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天资源网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:403074932
资料简介
2022年高考数学新题速递(新高考专版)第3期说明:此套试题共10题,包含4道单选题、2道多选题、4道填空题、2道解答题,题目来源于考试真题,旨在练习好题,不断思考,创新思维,沉淀基础,提升计算,练出平常心!难度:★★★☆☆用时:60分钟一、单项选择题:本大题共4小题,每小题5分,共计20分.每小题给出的四个选项中,只有一个选项是正确的.1.(2022苏州八校联盟第一次适应性检测10月)当x∈(0,π)时,下列不等式中一定成立的是()A.cos(cosx)>cos(sinx)B.sin(cosx)<cos(sinx)C.cos(cosx)<sin(sinx)D.sin(cosx)>cos(sinx)【答案】B【考点】三角函数大小比较【解析】由题意可知,对于选项A,当x=时,cos=,sin=,且0<<<,所以cos(cos)<cos(sin),故选项A错误;对于选项C,当x=时,cos(cos)=cos0,sin(sin)=sin1<cos0,则选项C错误;对于选项D,当x=时,sin(cos)=sin0,cos(sin)=cos1>sin0,则选项D错误;综上,答案选B.2.(2022淮安市六校第一次联考10月)已知函数f(x)=ax(a>1),若存在实m,n使得f(x)的定义域和值域都为[m,n],则实数a的取值范围为()A.(1,e]B.(1,a2)B.(1,)D.(,e)【答案】C 【考点】函数的定义域与值域、构造新函数、数形结合等【解析】由题意可知,am=m,an=n,则函数ax=x(x>0)有两个不等的根,即xlna=lnx,化为lna=(x>0)有两个不等的根,即曲线g(x)=与直线y=lna有两个交点,因为g′(x)=,所以当x∈(0,e)时,g′(x)>0,即函数g(x)单调递增;当x∈(e,+¥)时,g′(x)<0,即函数g(x)单调递减,所以当x=e时,g(x)max=g(e)=,且易知当x趋向于0时,g(x)趋向于-¥,当x趋向于+¥时,g(x)趋向于0,所以曲线g(x)=与直线y=lna有两个交点,可得0<lna<,解得1<a<,故答案选C.3.(2022南通市如皋中学10月)图1是我国古代数学家赵爽创制的一幅“勾股圆方图”(又称“赵爽弦图”),它是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形.受其启发,某同学设计了一个图形,它是由三个全等的钝角三角形与中间一个小正三角形拼成一个大正三角形,如图2所示,若,,则线段的长为A.3B.3.5C.4D.4.5【答案】A【解析】【分析】设,可得,求得,在中,运用余弦定理,解方程可得所求值.【详解】设,可得,且,在中,可得 ,即为,化为,解得舍去),故选.4.(202210月)三棱锥的所有顶点都在球的球面上.棱锥的各棱长为:,,则球的表面积为()A.B.C.D.【答案】B【解析】【分析】由各棱长结合勾股定理知为直三棱锥,有面,进而求出的外接圆半径,由外接球半径与、的几何关系即可求出,最后求外接球表面积即可.【详解】由题意知:,,,∴两两垂直,即为直三棱锥,∴若的外接圆半径为,则,又面,∴外接球心到的距离为,故外接球半径,∴外接球表面积.故选:B.二、多项选择题:本大题共2小题,每小题5分,共计10分.每小题给出的四个选项中,都有多个选项是正确的,全部选对的得5分,选对但不全的得2分,选错或不答的得0分.5.(2022江苏省第一次大联考10月)如图的形状出现在南宋数学家杨辉所著的《详解九章算法·商功》中,后人称为“三角垛”.“三角垛”最上层有1个球,第二层有3个球,第三层有6个球,….设第n层有an个球,从上往下n层球的总数为Sn,则 A.S5=35B.C.,n≥2D.【答案】ACD【考点】新情景问题下的数列的综合应用【解析】由题意可知,a1=1,a2-a1=2,a3-a2=3,…,an-an-1=n,以上式子相加,可得an=1+2+3+…+n=,对于选项A,S5=a1+a2+a3+a4+a5=1+3+6+10+15=35,故选项A正确;对于选项B,an+1-an=n+1,故选项B错误;对于选项C,当n≥2时,Sn-Sn-1=an=,故选项C正确;对于选项D,==2(-),所以++…+=2(1-)+2(-)+…+2(-)=2(1-)=,则选项D正确;综上,答案选ACD.6.(2022南京市二十九中10月)中,为边上的一点,且满足,若为边上的一点,且满足,则下列结论正确的是()A.B.的最大值为C.的最小值为D.的最小值为【答案】BD【解析】【分析】根据平面向量共线定理可知A错误;根据,利用基本不等式可求得最大值,知B正确; 由,利用基本不等式可求得最小值,知C错误;利用基本不等式可得,知D正确.【详解】对于A,,三点共线,,A错误;对于B,,(当且仅当时取等号),B正确;对于C,(当且仅当,即时取等号),C错误;对于D,(当且仅当时取等号),D正确.故选:BD.三、填空题:本题共2小题,每小题5分,共计10分.7.(2022苏州八校联盟第一次适应性检测10月)已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<π)图象上的一个最高点是(2,),这个最高点到其相邻的最低点间图象与x轴交于点(4,0).设*),则数列{an}的前2021项和为.【答案】+1【考点】三角函数的图形与性质、数列的求和【解析】由题意可知,,则T=8,解得 ,所以cosφ=1,且|φ|<π,所以φ=0,即,所以an=f(n)=sin,所以S8n=0,则1.8.(2022泰州市10月)在数列中,,为的前项和.关于的方程有唯一的解.则(1)________;(2)若不等式对任意的恒成立,则实数的取值范围为________.【答案】①②【解析】【分析】设知:为偶函数,(1)根据偶函数的对称性,及题设方程有唯一解,有时方程成立,即得,进而写出数列通项;(2)由(1)及已知可得,令得,即知先减后增,进而求的取值范围.【详解】设,则为偶函数,(1)由关于的方程有唯一的解,知是该方程的唯一解,则有,∴数列为等差数列,而,易得,则; (2)由,可得,则,令,则,易得,当时,,当时,,∴有,当为偶数时,从而得;当为奇数时,,从而得;综上可得得取值范围为.故答案为:;.四、解答题:本题共2小题,共计20分.解答应写出文字说明、证明过程或演算步骤.9.(2022淮安市六校第一次联考10月)在①f(x)+f(-x)=0,②f(x)-f(-x)=0,③f(-2)=-f(2)这三个条件中选择一个,补充在下面问题中,并给出解答.已知函数)满足.(1)求a的值;(2)若函数,证明:g(x2-x)≤.【考点】结构不良题:函数的性质综合应用、证明不等式【解析】若选择②f(x)-f(-x)=0,因为f(x)-f(-x)=0,所以, 所以,所以x=0,a≥0,此时求不出a的具体值,所以不能选②.若选择①f(x)+f(-x)=0,(1)因为f(x)+f(-x)=0,所以log0,所以lo,…………4分所以,解得a=1,…………6分(2)由(1)知,,所以,……8分所以-x2+x.……10分若选择③f(-2)=-f(2),(1)因为f(-2)=-f(2),所以,所以(1,…………4分所以4+a-4=1,所以a=1.…………6分(2)由(1)知x)=log2(-x),所以=-x+1,……8分 所以-x2+x.……10分10.(2022泰州市10月)数列中,,,设.(1)求证:数列是等比数列;(2)求数列的前项和;(3)若,为数列的前项和,求不超过的最大的整数.【答案】(1)证明见解析;(2);(3)2021.【解析】【分析】(1)将两边都加,证明是常数即可;(2)求出的通项,利用错位相减法求解即可;(3)先求出,再求出的表达式,利用裂项相消法即可得解.【详解】(1)将两边都加,得,而,即有,又,则,,所以数列是首项为,公比为的等比数列; (2)由(1)知,,则,,,因此,,所以;(3)由(2)知,于是得,则,因此,,所以不超过的最大的整数是2021.

10000+的老师在这里下载备课资料