必考部分第十章 计数原理、概率、随机变量及其分布(理)
高考大题规范解答系列(六)——概率与统计
考点突破·互动探究
考点一离散型随机变量的分布列与期望(理)(2021·山西联考)已知甲盒中有三个白球和三个红球,乙盒中仅装有三个白球,球除颜色外完全相同.现从甲盒中任取三个球放入乙盒中.(1)求乙盒中红球个数X的分布列与期望;(2)求从乙盒中任取一球是红球的概率.例1
【评分细则】(1)第一问中,正确算出P(X=0),P(X=1),P(X=2),P(X=3)各得1分,列出分布列得1分,求出期望得1分.(2)第二问中,分类讨论,每种情况各占1分.(3)其他方法按步骤酌情给分.
(2019·课标Ⅰ,21)为治疗某种疾病,研制了甲、乙两种新药,希望知道哪种新药更有效,为此进行动物试验.试验方案如下:每一轮选取两只白鼠对药效进行对比试验.对于两只白鼠,随机选一只施以甲药,另一只施以乙药.一轮的治疗结果得出后,再安排下一轮试验.当其中一种药治愈的白鼠比另一种药治愈的白鼠多4只时,就停止试验,并认为治愈只数多的药更有效.为了方便描述问题,约定:对于每轮试验,若施以甲药的白鼠治愈且施以乙药的白鼠未治愈,则甲药得1分,乙药得-1分;若施以乙药的白鼠治愈且施以甲药的白鼠未治愈,则乙药得1分,甲药得-1分;若都治愈或都未治愈,则两种药均得0分.甲、乙两种药的治愈率分别记为α和β,一轮试验中甲药的得分记为X.例2
(1)求X的分布列;(2)若甲药、乙药在试验开始时都赋予4分,pi(i=0,1,…,8)表示“甲药的累计得分为i时,最终认为甲药比乙药更有效”的概率,则p0=0,p8=1,pi=api-1+bpi+cpi+1(i=1,2,…,7),其中a=P(X=-1),b=P(X=0),c=P(X=1).假设α=0.5,β=0.8.①证明:{pi+1-pi}(i=0,1,2,…,7)为等比数列;②求p4,并根据p4的值解释这种试验方案的合理性.
【评分细则】①每个式子1分,表格1分;给出X的可能取值给1分;②得出a、b、c的值(有正确的)得1分;③得到Pi+1-Pi=4(Pi-Pi-1)得1分;④给出结论得1分;⑤得出P8,P4,P1的表达式各得1分;⑥说明P4非常小得1分;⑦说明实验方案合理得1分.
【名师点评】1.核心素养:本题主要考查相互独立事件的概率、随机变量的期望、方差的应用、二项分布、决策问题等,考查数据处理能力、运算求解能力,考查或然与必然思想,考查的核心素养的逻辑推理、数学建模、数学运算、数据分析.2.解题技巧:破解此类题的关键:一是认真读题,读懂题意;二是会利用导数求最值;三是会利用公式求服从特殊分布的离散型随机变量的期望值;四是会利用期望值,解决决策型问题.
考点一随机抽样、频率分布直方图及其应用(文)(2021·河南质量测评)“不忘初心、牢记使命”主题教育活动正在全国开展,某区政府为统计全区党员干部一周参与主题教育活动的时间,从全区的党员干部中随机抽取n名,获得了他们一周参加主题教育活动的时间(单位:时)的频率分布直方图,如图所示,已知参加主题教育活动的时间在(12,16]内的人数为92.例1
(1)估计这些党员干部一周参与主题教育活动的时间的平均值;(2)用频率估计概率,如果计划对全区一周参与主题教育活动的时间在(16,24]内的党员干部给予奖励,且参与时间在(16,20],(20,24]内的分别获二等奖和一等奖,通过分层抽样方法从这些获奖人中随机抽取5人,再从这5人中任意选取3人,求3人均获二等奖的概率.【分析】(1)先利用频率分布“直方图中各小矩形面积为1”求出a的值,再利用各小矩形中点横坐标与该矩形面积积的和求平均值;(2)利用分层抽样的性质先求出在(16,20],(20,24]内分别抽取的人数,再用列举法求概率.
【评分细则】①列对算式计算错误得1分,全对得2分;②列对算式计算错误得1分,全对得2分;③计算错误不得分;④求对(20,24],(16,20]上人数各得1分;⑤求对(20,24]或(16,20]内抽取人数得1分;⑥列举出事件空间得1分,数对数目得1分;求对概率得1分.
【名师点评】本题主要考查随机抽样、频率分布直方图及概率,考查学生数据处理能力、运算能力.
〔变式训练1〕(2020·四川成都诊断)2019年12月,《生活垃圾分类标志》新标准分布并正式实施.为进一步普及生活垃圾分类知识,了解居民生活垃圾分类情况,某社区开展了一次关于垃圾分类的问卷调查活动,并对随机抽取的1000人的年龄进行了统计,得到如下的各年龄段频数分布表和各年龄段人数频率分布直方图:
组数分组频数第一组[25,30)200第二组[30,35)300第三组[35,40)m第四组[40,45)150第五组[45,50)n第六组[50,55]50合计1000
(1)请补全各年龄段人数频率分布直方图,并求出各年龄段频数分布表中m,n的值;(2)现从年龄在[30,40)段中采用分层抽样的方法选取5名代表参加垃圾分类的知识交流活动,应社区要求,从被选中的这5名代表中任意选2名作交流发言,求选取的2名发言者中恰有1名年龄在[35,40)段中的概率.
由频率分布直方图,知m=0.02×1000=200,n=0.02×(50-45)×1000=100.
考点二线性回归分析(2018·全国2)下图是某地区2000年至2016年环境基础设施投资y(单位:亿元)的折线图.例2
【分析】(1)模型①中取t=19,模型②中取t=9,求出对应的函数值即可;(2)利用所给折线图中数据的增长趋势,加以分析即可.
【评分细则】①根据模型①求出预测值给3分;②根据模型②求出预测值给3分;③判断模型②得到的预测值更可靠给2分;④作出正确的判断,写出合理理由,给4分;
【名师点评】1.核心素养:本题主要考查线性回归方程的实际应用,考查考生的应用意识,分析问题与解决问题的能力以及运算求解能力,考查数学的核心素养是数据分析、数学建模、数学运算.2.解题技巧:统计中涉及的图形较多、常见的有条形统计图、折线图、茎叶图、频率分布直方图、应熟练地掌握这些图形的特点,提高识图与用图的能力.
〔变式训练2〕(2021·安徽蚌埠质检)经销商小王对其所经营的某一型号二手汽车的使用年数x(0<x≤10,x∈N)与每辆的销售价格y(单位:万元)进行整理,得到如表的对应数据:使用年数246810售价16139.574.5
(2)由题意,z=y-ω=-1.45x+18.7-(0.05x2-1.75x+17.2)=-0.05x2+0.3x+1.5,其中0<x≤10,且x∈N,z=-0.05x2+0.3x+1.5=-0.05(x-3)2+1.95,所以预测x=3时,销售一辆该型号汽车所获得的利润最大.
考点三独立性检验(2018·课标全国Ⅲ)某工厂为提高生产效率,开展技术创新活动,提出了完成某项生产任务的两种新的生产方式.为比较两种生产方式的效率,选取40名工人,将他们随机分成两组,每组20人.第一组工人用第一种生产方式,第二组工人用第二种生产方式.根据工人完成生产任务的工作时间(单位:min)绘制了如下茎叶图:例4
【分析】(1)根据茎叶图中的数据大致集中在哪个茎,作出判断;(2)通过茎叶图确定数据的中位数,按要求完成2×2列联表;(3)根据(2)中2×2列联表,将有关数据代入公式计算得K2的值,借助临界值表作出统计推断.
(ii)由茎叶图可知:用第一种生产方式的工人完成生产任务所需时间的中位数为85.5分钟,用第二种生产方式的工人完成生产任务所需时间的中位数为73.5分钟.因此第二种生产方式的效率更高.(iii)由茎叶图可知:用第一种生产方式的工人完成生产任务平均所需时间高于80分钟;用第二种生产方式的工人完成生产任务平均所需时间低于80分钟.因此第二种生产方式的效率更高.
(iv)由茎叶图可知:用第一种生产方式的工人完成生产任务所需时间分布在茎8上的最多.关于茎8大致呈对称分布;用第二种生产方式的工人完成生产任务所需时间分布在茎7上的最多,关于茎7大致呈对称分布.又用两种生产方式的工人完成生产任务所需时间分布的区间相同,故可以认为用第二种生产方式完成生产任务所需的时间比用第一种生产方式完成生产任务所需的时间更少.因此第二种生产方式的效率更高.
【评分细则】①答案给出了4种理由,考生答出任意一种或其他合理理由,均给4分;②由茎叶图求出中位数,给2分;③按要求完成2×2列联表,给2分;④根据公式正确求出K2的值,给3分;⑤借助于临界值表作出判断,给1分.
【名师点评】1.核心素养:茎叶图及独立性检验是高考命题的重点,在每年的高考试题都以不同的命题背景进行命制.此类问题主要考查学生的分析问题和解决实际问题的能力,同时考查“数据分析”的数学核心素养.2.解题技巧:(1)审清题意:弄清题意,理顺条件和结论;(2)找数量关系:把图形语言转化为数字,找关键数量关系;(3)建立解决方案:找准公式,将2×2列联表中的数值代入公式计算;(4)作出结论:依据数据,借助临界值表作出正确判断.
〔变式训练3〕(理)(2021·湖南百校联考)2020年3月受新冠肺炎疫情的影响,我市全体学生只能网上在线学习.为了了解学生在线学习的情况,市教研院数学教研室随机从市区各高中学校抽取60名学生对线上教学情况进行调查(其中男生与女生的人数之比为2:1),结果发现男生中有10名对线上教学满意,女生中有12名对线上教学不满意.
(1)请完成如下2×2列联表,并回答能否有90%的把握认为“对线上教学是否满意与性别有关”;满意不满意合计男生女生合计60
(1)分别估计该市一天的空气质量等级为1,2,3,4的概率;(2)求一天中到该公园锻炼的平均人次的估计值(同一组中的数据用该组区间的中点值为代表);(3)若某天的空气质量等级为1或2,则称这天“空气质量好”;若某天的空气质量等级为3或4,则称这天“空气质量不好”.根据所给数据,完成下面的2×2列联表,并根据列联表,判断是否有95%的把握认为一天中到该公园锻炼的人次与该市当天的空气质量有关?
考点四正态分布(理)国庆70周年阅兵式上的女兵们是一道靓丽的风景线,每一名女兵都是经过层层筛选才最终入选受阅方队,筛选标准非常严格,例如要求女兵身高(单位:cm)在区间[165,175]内.现从全体受阅女兵中随机抽取200人,对她们的身高进行统计,将所得数据分为[165,167),[167,169),[169,171),[171,173),[173,175]五组,得到如图所示的频率分布直方图,其中第三组的频数为75,最后三组的频率之和为0.7.例5
(1)计算平均值μ与标准差σ;(2)假设这台3D打印设备打印出的零件内径Z服从正态分布N(μ,σ2),该团队到工厂安装调试后,试打了5个零件,度量其内径分别为:86,95,103,109,118(单位:μm),试问:此打印设备是否需要进一步调试,为什么?参考数据:P(μ-2σ<Z<μ+2σ)=0.9544,P(μ-3σ<Z<μ+3σ)=0.9974,0.95443=0.87,0.99744=0.99,0.04562=0.002.
考点五*概率、统计与函数、数列、不等式的综合(理)例6
根据上述数据画出如图所示的散点图:
(1)根据图中所示的散点图判断y=ax+b和y=clnx+d哪个更适宜作为销售量y关于利润x的回归方程类型?(给出判断即可,不需要说明理由);(2)根据(1)中的判断结果及参考数据,求出y关于x的回归方程;(3)根据回归方程分析:设该科普书一个季度的利润总额为z(单位:千元),当季销售量y为何值时,该书一个季度的利润总额预报值最大?(季利润总额=季销售量×每本书的利润)
(3)由题意得z=xy=x(24.48-10.20lnx),z′=[x(24.48-10.20lnx)]′=14.28-10.20lnx,令z′=0即14.28-10.20lnx=0,解得lnx=1.40,所以x≈4.06.
当x∈(0,4.06)时,z′>0,所以z在(0,4.06)上单调递增,当x∈(4.06,+∞)时,z′<0,所以z在(4.06,+∞)上单调递减,所以当x=4.06时,即季销量y=10.20千本时,季利润总额预报值最大.
(1)经过1轮投球,记甲的得分为X,求X的分布列;(2)若经过n轮投球,用pi表示经过第i轮投球,累计得分,甲的得分高于乙的得分的概率.①求p1,p2,p3;②规定p0=0,经过计算机计算可估计得pi=api+1+bpi+cpi-1(b≠1),请根据①中p1,p2,p3的值分别写出a,c关于b的表达式,并由此求出数列{pn}的通项公式.
您好,谢谢观看!
谢谢观看