2022年高考数学(理数)一轮考点精选练习35《空间向量及其应用》(含详解)
加入VIP免费下载

2022年高考数学(理数)一轮考点精选练习35《空间向量及其应用》(含详解)

ID:937790

大小:133 KB

页数:7页

时间:2022-03-07

加入VIP免费下载
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天资源网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:403074932
资料简介
2022年高考数学(理数)一轮考点精选练习35《空间向量及其应用》如图,在多面体EFABCD中,四边形ABCD,ABEF均为直角梯形,∠ABC=∠ABE=90°,四边形DCEF为平行四边形,平面ABCD⊥平面DCEF.(1)求证:平面ADF⊥平面ABCD;(2)若△ABD是边长为2的等边三角形,且异面直线BF与CE所成的角为45°,求点E到平面BDF的距离.如图所示,四棱锥SABCD的底面是正方形,每条侧棱的长都是底面边长的倍,点P为侧棱SD上的点.(1)求证:AC⊥SD;(2)若SD⊥平面PAC,则侧棱SC上是否存在一点E,使得BE∥平面PAC.若存在,求SE∶EC的值;若不存在,试说明理由. 如图所示,四棱锥S-ABCD的底面是正方形,每条侧棱的长都是底面边长的倍,点P为侧棱SD上的点.(1)求证:AC⊥SD;(2)若SD⊥平面PAC,则侧棱SC上是否存在一点E,使得BE∥平面PAC.若存在,求SE∶EC的值;若不存在,试说明理由.如图,在长方体ABCDA1B1C1D1中,AA1=AD=1,E为CD的中点.(1)求证:B1E⊥AD1.(2)在棱AA1上是否存在一点P,使得DP∥平面B1AE.若存在,求AP的长;若不存在,说明理由. 如图,棱柱ABCD-A1B1C1D1的所有棱长都等于2,∠ABC和∠A1AC均为60°,平面AA1C1C⊥平面ABCD.(1)求证:BD⊥AA1;(2)在直线CC1上是否存在点P,使BP∥平面DA1C1,若存在,求出点P的位置,若不存在,请说明理由.如图,在四棱锥P-ABCD中,PA⊥平面ABCD,∠ABC=90°,△ABC≌△ADC,PA=AC=2AB=2,E是线段PC的中点.(1)求证:DE∥平面PAB;(2)求二面角D-CP-B的余弦值. 答案解析解:(1)∵∠ABC=∠ABE=90°,∴AB⊥BC,AB⊥BE.又BC,BE⊂平面BCE,且交于点B,∴AB⊥平面BCE.又CE⊂平面BCE,∴AB⊥CE.又∵AB∥CD,CE∥DF,∴CD⊥DF.又平面ABCD⊥平面DCEF,且交于CD,DF⊂平面DCEF,∴DF⊥平面ABCD.又DF⊂平面ADF,∴平面ADF⊥平面ABCD.(2)∵CE∥DF,∴∠BFD为异面直线BF与CE所成的角,则∠BFD=45°.在Rt△BDF中,∠BFD=∠DBF=45°,∴DF=BD=2.∵△ABD是边长为2的等边三角形,∠ABC=90°,∴在Rt△BCD中,∠CBD=30°,∴CD=1,BC=.∵CE∥DF,DF⊂平面BDF,CE⊄平面BDF,∴CE∥平面BDF,∴点C到平面BDF的距离即为点E到平面BDF的距离.由(1)可知DF⊥平面ABCD,则DF为三棱锥F-BCD的高.设点E到平面BDF的距离为h,由VE-BDF=VC-BDF=VF-BCD,得S△BDF·h=S△BCD·DF,∴h==.解:(1)证明:连接BD,设AC交BD于点O,则AC⊥BD.连接SO,由题意知SO⊥平面ABCD.以O为坐标原点,,,所在直线分别为x轴,y轴,z轴,建立空间直角坐标系,如图.设底面边长为a,则高SO=a,于是S,D,B,C,=,=,则·=0.故OC⊥SD.从而AC⊥SD.(2)棱SC上存在一点E,使BE∥平面PAC.理由如下:由已知条件知是平面PAC的一个法向量,且=,=,=.设=t, 则=+=+t=,而·=0⇒t=.即当SE∶EC=2∶1时,⊥.而BE⊄平面PAC,故BE∥平面PAC.解:(1)连接BD,设AC交BD于点O,则AC⊥BD.连接SO,由题意,知SO⊥平面ABCD.以O为坐标原点,,,所在直线分别为x轴,y轴,z轴,建立空间直角坐标系,如图.设底面边长为a,则高SO=a,于是S,D,B,C,则=,=,所以·=0.故OC⊥SD.从而AC⊥SD.(2)棱SC上存在一点E,使BE∥平面PAC.理由如下:由已知条件,知是平面PAC的一个法向量,且=,=,=. 设=t,则=+=+t=,而·=0⇒t=,即当SE∶EC=2∶1时,⊥.而BE⊄平面PAC,故BE∥平面PAC.解:(1)证明:以A为原点,,,的方向分别为x轴,y轴,z轴的正方向建立空间直角坐标系(如图).设AB=a,则A(0,0,0),D(0,1,0),D1(0,1,1),E,B1(a,0,1),故=(0,1,1),=,=(a,0,1),=. 因为·=-×0+1×1+(-1)×1=0,所以B1E⊥AD1.(2)假设在棱AA1上存在一点P(0,0,z0),使得DP∥平面B1AE,此时=(0,-1,z0).又设平面B1AE的法向量n=(x,y,z).因为n⊥平面B1AE,所以n⊥,n⊥,得取x=1,得平面B1AE的一个法向量n=.要使DP∥平面B1AE,只要n⊥,有-az0=0,解得z0=.又DP⊄平面B1AE,所以存在点P,满足DP∥平面B1AE,此时AP=.解:(1)证明:设BD与AC交于点O,则BD⊥AC,连接A1O,在△AA1O中,AA1=2,AO=1,∠A1AO=60°,∴A1O2=AA+AO2-2AA1·AOcos60°=3,∴AO2+A1O2=AA,∴A1O⊥AO.由于平面AA1C1C⊥平面ABCD,且平面AA1C1C∩平面ABCD=AC,A1O⊂平面AA1C1C,∴A1O⊥平面ABCD.以OB,OC,OA1所在的直线分别为x轴,y轴,z轴建立如图所示的空间直角坐标系,则A(0,-1,0),B(,0,0),C(0,1,0),D(-,0,0),A1(0,0,),C1(0,2,).由于=(-2,0,0),=(0,1,),·=0×(-2)+1×0+×0=0,∴⊥,即BD⊥AA1.(2)假设在直线CC1上存在点P,使BP∥平面DA1C1,设=λ,P(x,y,z),则(x,y-1,z)=λ(0,1,).从而有P(0,1+λ,λ),=(-,1+λ,λ).设平面DA1C1的法向量为n=(x1,y1,z1), 则又=(0,2,0),=(,0,),则取n=(1,0,-1),因为BP∥平面DA1C1,则n⊥,即n·=--λ=0,得λ=-1,即点P在C1C的延长线上,且C1C=CP.解:(1)以B为坐标原点,BA所在的直线为x轴,BC所在的直线为y轴,过点B且与平面ABC垂直的直线为z轴,建立空间直角坐标系如图所示.则B(0,0,0),C(0,,0),P(1,0,2),D,A(1,0,0),E,∴=(-1,0,1),=(1,0,2),=(1,0,0).设平面PAB的法向量为n=(a,b,c),则∴∴n=(0,1,0)为平面PAB的一个法向量.又·n=0,DE⊄平面PAB,∴DE∥平面PAB.(2)由(1)易知=(0,,0),=,=,设平面PBC的法向量为n1=(x1,y1,z1),则∴令x1=2,则y1=0,z1=-1,∴n1=(2,0,-1)为平面PBC的一个法向量.设平面DPC的法向量为n2=(x2,y2,z2),则∴令x2=1,则y2=,z2=1,∴n2=(1,,1)为平面DPC的一个法向量.∴cos〈n1,n2〉==.故二面角D-CP-B的余弦值为.

10000+的老师在这里下载备课资料