专题3.9函数的实际应用新课程考试要求能将一些简单的实际问题转化为相应的函数问题,并给予解决.核心素养培养学生数学抽象(多例)、数学运算(多例)、逻辑推理(例9)、数据分析(例3)、直观想象(例3)等核心数学素养.考向预测(1)从实际问题中抽象出函数模型,进而利用函数知识求解;(2)函数的综合应用.(3)常与二次函数、指数函数、对数函数、三角函数、数列、基本不等式及导数等知识交汇.【知识清单】1.常见的几种函数模型(1)一次函数模型:y=kx+b(k≠0).(2)反比例函数模型:y=(k≠0).(3)二次函数模型:y=ax2+bx+c(a,b,c为常数,a≠0).(4)指数函数模型:y=a·bx+c(b>0,b≠1,a≠0).(5)对数函数模型:y=mlogax+n(a>0,a≠1,m≠0).2.指数、对数及幂函数三种增长型函数模型的图象与性质函数性质y=ax(a>1)y=logax(a>1)y=xn(n>0)在(0,+∞)上的增减性单调递增单调递增单调递增增长速度越来越快越来越慢相对平稳图象的变化随x的增大逐渐表现为与y轴平行随x的增大逐渐表现为与x轴平行随n值变化而各有不同值的比较存在一个x0,当x>x0时,有logax