专题3.5指数与指数函数新课程考试要求1.了解指数幂的含义,掌握有理指数幂的运算。2.理解指数函数的概念,掌握指数函数的图象、性质及应用.3.了解指数函数的变化特征.核心素养培养学生数学抽象(例5)、数学运算(多例)、逻辑推理(例8)、直观想象(例6.7.9)等核心数学素养.考向预测1.指数幂的运算;2.指数函数的图象和性质的应用;3.与指数函数相关,考查视图用图能力、数形结合思想的应用、函数单调性的应用、运算能力等,常与的对数函数等结合考查,如比较函数值的大小;【知识清单】1.根式和分数指数幂1.n次方根定义一般地,如果xn=a,那么x叫做a的__n次方根__,其中n>1,且n∈N*个数n是奇数a>0x>0x仅有一个值,记为a<0x<0n是偶数a>0x有两个值,且互为相反数,记为±a<0x不存在2.根式(1)概念:式子叫做根式,其中n叫做根指数,a叫做被开方数.(2)性质:①()n=a.②=3.分数指数幂(1)规定:正数的正分数指数幂的意义是a=(a>0,m,n∈N*,且n>1);正数的负分数指数幂的意义是a-=(a>0,m,n∈N*,且n>1);0的正分数指数幂等于0;0的负分数指数幂没有意义.(2)有理指数幂的运算性质:aras=ar+s;(ar)s=ars;(ab)r=arbr,其中a>0,b>0,r,s∈Q.2.指数函数的图象和性质(1)概念:函数y=ax(a>0且a≠1)叫做指数函数,其中指数x是变量,函数的定义域是R,a是底数.(2)指数函数的图象与性质
a>101;当x