高考大题增分专项一高考中的函数与导数
-2-从近五年的高考试题来看,高考对函数与导数的考查,已经从直接利用导数的正负讨论函数的单调区间,或利用函数单调性求函数的极值、最值问题,转变成利用求导的方法证明不等式,探求参数的取值范围,解决函数的零点、方程根的问题,以及在某不等式成立的条件下,求某一参数或某两个参数构成的代数式的最值.
-3-题型一题型二题型三策略一策略二策略三突破策略一差函数法证明函数不等式f(x)>g(x),可证f(x)-g(x)>0,令h(x)=f(x)-g(x),或令h(x)为f(x)-g(x)表达式的某一部分,利用导数证明h(x)min>0;如果h(x)没有最小值,那么可利用导数确定出h(x)的单调性,即若h'(x)>0,则h(x)在(a,b)上是增函数,同时若h(a)≥0,则当x∈(a,b)时,有h(x)>0,即f(x)>g(x).
-4-题型一题型二题型三策略一策略二策略三例1设函数f(x)=lnx-x+1.(1)讨论f(x)的单调性;(3)设c>1,证明当x∈(0,1)时,1+(c-1)x>cx.(1)解:(导数与函数的单调性)令f'(x)=0解得x=1.当0x0时,g'(x)