专题02中点弦问题(设而不求与点差法)【突破满分数学之秒杀技巧与答题模板】:第一步:若,是椭圆上不重合的两点,则,第二步:两式相减得,第三步:是直线的斜率,是线段的中点,化简可得,此种方法为点差法。若是椭圆上不垂直于x轴的两点,是的中点,为椭圆的中心,则直线与的斜率之积为定值【考点精选例题精析】:例1.已知双曲线为该双曲线的右焦点,过的直线交该双曲线于两点,且的中点,则该双曲线的方程为.例2.已知抛物线的一条弦恰好以为中点,则弦所在直线的方程是()A.B.C.D.
例3.已知椭圆,(1)求过点且被平分的弦所在直线的方程;(2)求斜率为2的平行弦的中点轨迹方程;(3)过引椭圆的割线,求截得的弦的中点的轨迹方程;(4)椭圆上有两点、,为原点,且有直线、斜率满足,求线段中点的轨迹方程.例4.(2015年新课标全国卷II20)已知椭圆,直线不过原点且不平行于坐标轴,与有两个交点,线段的中点为.(1)证明:直线的斜率与的斜率的乘积为定值;(2)若过点,延长线段与交于点,四边形能否平行四边行?若能,求此时的斜率,若不能,说明理由.
【达标检测】:1.(2013年新课标全国卷I10)已知椭圆的右焦点为,过点的直线交椭圆于两点.若的中点坐标为,则的方程为()A.B.C.D.2.(2010年新课标全国卷12)已知双曲线的中心为原点,是的焦点,过的直线与相交于两点,且的中点为,则的方程为()A.B.C.D.4.已知抛物线,过其焦点且斜率为1的直线交抛物线于、两点,若线段的中点的纵坐标为2,则该抛物线的准线方程为()A.B.C.D.5.设为抛物线:的焦点,过点的直线交抛物线于两点,点为线段的中点,若,则直线的斜率等于.6.已知倾斜角为的直线过点和点,在第一象限,.(1)求点的坐标;(2)若直线与双曲线相交于、两点,且线段的中点坐标为,求的值.
7.已知斜率为的直线与椭圆:交于,两点,线段的中点为.(1)证明:;(2)设为的右焦点,为上一点,且.证明:,,成等差数列,并求该数列的公差.