[练案5]第二讲 函数的定义域、值域A组基础巩固一、单选题1.(2021·山东临沂月考)函数f(x)=+ln|x|的定义域为( B )A.[-1,+∞) B.[-1,0)∪(0,+∞)C.(-∞,-1] D.(-1,0)∪(0,+∞)[解析] 由题意得∴x∈[-1,0)∪(0,+∞).故选B.2.f(x)=x2+x+1在[-1,1]上的值域为( C )A.[1,3] B.C. D.[解析] ∵f(x)=x2+x+1的对称轴为x=-,∴f(x)min=f=,又f(-1)=1,f(1)=3,∴f(x)∈.3.(2021·北京西城区模拟)下列函数中,值域为[0,1]的是( D )A.y=x2 B.y=sinxC.y= D.y=[解析] y=x2的值域[0,+∞),y=sinx的值域为[-1,1],y=的值域(0,1],故选D.4.(2021·广东华南师大附中月考)已知函数f(x)的定义域是[-1,1],则函数g(x)=的定义域是( B )A.[0,1] B.(0,1) C.[0,1) D.(0,1][解析] 解得01,∴00,且a≠1)的定义域和值域都是[0,1],可得≤≤1,则00得x>或x2时,f(x)=2x>4,当0≤x≤2时,f(x)=x2∈[0,4],所以f(x)≥0,即函数的值域为[0,+∞),不满足条件;D项,f(x)=x3-1是增函数,函数的值域为R,满足条件.11.(2021·河南安阳三校联考改编)若函数f(x)=的定义域为一切实数,则实数m的取值可以是( AB )A.0 B.4 C.5 D.6[解析] 由题意可得mx2+mx+1≥0恒成立.当m=0时,1≥0恒成立;
当m≠0时,则解得00);③y=x2+2x-10;
④y=其中定义域与值域相同的函数的个数为( B )A.1 B.2 C.3 D.4[解析] ①y=3-x的定义域和值域均为R,②y=2x-1(x>0)的定义域为(0,+∞),值域为(,+∞),③y=x2+2x-10的定义域为R,值域为[-11,+∞),④y=的定义域和值域均为R.所以定义域与值域相同的函数是①④,共有2个,故选B.3.(多选题)已知f(x)=的值域为R,那么a的取值可能是( AB )A.-1 B.0C. D.1[解析] 要使函数f(x)的值域为R,需使解得∴-1≤a