2022年高考数学一轮复习讲练测2.8 函数的图象(新高考浙江)(讲)解析版
加入VIP免费下载

2022年高考数学一轮复习讲练测2.8 函数的图象(新高考浙江)(讲)解析版

ID:943473

大小:840.86 KB

页数:20页

时间:2022-03-11

加入VIP免费下载
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天资源网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:403074932
资料简介
2022年高考数学一轮复习讲练测(新高考·浙江)第一章函数专题2.8函数的图象(讲)【考试要求】1.会运用函数图象理解和研究函数的性质.【高考预测】1.函数图象的辨识2.函数图象的变换3.主要有由函数的性质完成解析式与图象的配伍;由函数的图象来研究函数的性质、图象的变换、数形结合解决不等式、方程等问题.常常与导数结合考查.【知识与素养】知识点1.利用描点法作函数的图象步骤:(1)确定函数的定义域;(2)化简函数解析式;(3)讨论函数的性质(奇偶性、单调性、周期性、对称性等);(4)列表(尤其注意特殊点、零点、最大值点、最小值点、与坐标轴的交点等),描点,连线.【典例1】(2021·全国高考真题(文))已知函数.(1)画出和的图像;(2)若,求a的取值范围.【答案】(1)图像见解析;(2)【解析】20/20 (1)分段去绝对值即可画出图像;(2)根据函数图像数形结和可得需将向左平移可满足同角,求得过时的值可求.【详解】(1)可得,画出图像如下:,画出函数图像如下:(2),20/20 如图,在同一个坐标系里画出图像,是平移了个单位得到,则要使,需将向左平移,即,当过时,,解得或(舍去),则数形结合可得需至少将向左平移个单位,.【规律方法】函数图象的画法(1)直接法:当函数表达式(或变形后的表达式)是熟悉的基本函数时,就可根据这些函数的特征描出图象的关键点直接作出.(2)转化法:含有绝对值符号的函数,可去掉绝对值符号,转化为分段函数来画图象.知识点2.利用图象变换法作函数的图象(1)平移变换(2)对称变换20/20 y=f(x)的图象y=-f(x)的图象;y=f(x)的图象y=f(-x)的图象;y=f(x)的图象y=-f(-x)的图象;y=ax(a>0,且a≠1)的图象y=logax(a>0,且a≠1)的图象.(3)伸缩变换y=f(x)y=f(ax).y=f(x)y=Af(x).(4)翻转变换y=f(x)的图象y=|f(x)|的图象;y=f(x)的图象y=f(|x|)的图象.【典例2】(2021·河北衡水市·高三其他模拟)函数的图象向右平移1个单位长度得到函数的图象,则的图象大致为()A.B.C.D.【答案】D【解析】根据函数图象的变换,求得函数,根据当时,得到,可排除A、B;当20/20 时,得到,可排除C,进而求解.【详解】由题意,可得,其定义域为,当时,,函数,故排除A、B选项;当时,0,故函数,故排除C选项;当时,函数,该函数图象可以看成将函数的图象向右平移一个单位得到,选项D符合.故选:D.【重点总结】图象变换法若函数图象可由某个基本函数的图象经过平移、翻折、对称得到,可利用图象变换作出,并应注意平移变换与伸缩变换的顺序对变换单位及解析式的影响.【重点难点突破】考点1作图例1.(2021·北京高三二模)已知指数函数,将函数的图象上的每个点的横坐标不变,纵坐标扩大为原来的倍,得到函数的图象,再将的图象向右平移个单位长度,所得图象恰好与函数的图象重合,则a的值是()A.B.C.D.【答案】D【解析】根据函数图象变换求出变换后的函数解析式,结合已知条件可得出关于实数的等式,进而可求得实数20/20 的值.【详解】由题意可得,再将的图象向右平移个单位长度,得到函数,又因为,所以,,整理可得,因为且,解得.故选:D.【易错提醒】对于左、右平移变换,往往容易出错,在实际判断中可熟记口诀:左加右减;但要注意加、减指的是自变量,否则不成立.【变式探究】作出函数y=|x-2|·(x+1)的图象.【答案】4,2.【解析】当x≥2,即x-2≥0时,y=(x-2)(x+1)=x2-x-2=2-;当x<2,即x-2<0时,y=-(x-2)(x+1)=-x2+x+2=-2+.所以y=这是分段函数,每段函数的图象可根据二次函数图象作出(如图).考点2识图20/20 例2.(2020·天津高考真题)函数的图象大致为()A.B.C.D.【答案】A【解析】由函数的解析式可得:,则函数为奇函数,其图象关于坐标原点对称,选项CD错误;当时,,选项B错误.故选:A.例3.(2020·全国高三其他(理))若函数的大致图象如图所示,则的解析式可以是()A.B.C.D.【答案】C【解析】20/20 当x→0时,f(x)→±∞,排除A,B(A中的f(x)→0);当x<0时f(x)<0,而选项B中x<0时,f(x)0,选项D中f(x)0,排除B,D;故选C.【总结提升】识图的三种常用方法1.抓住函数的性质,定性分析:(1)由函数的定义域,判断图象的左、右位置,由函数的值域,判断图象的上、下位置;(2)由函数的单调性,判断图象的变化趋势;(3)由函数的奇偶性,判断图象的对称性;(4)由函数的周期性,判断图象的循环往复.2.抓住函数的特征,定量计算:从函数的特征点,利用特征点、特殊值的计算分析解决问题.3.根据实际背景、图形判断函数图象的方法:(1)根据题目所给条件确定函数解析式,从而判断函数图象(定量分析);(2)根据自变量取不同值时函数值的变化、增减速度等判断函数图象(定性分析).【变式探究】1.函数y=ax(a>0且a≠1)与函数y=f(x)的图像关于直线y=x对称,则函数y=f(x)与二次函数y=(a−1)x2−x在同一坐标系内的图像可能是()A.B.C.D.【答案】A【解析】因为函数y=ax(a>0且a≠1)与函数y=f(x)的图像关于直线y=x对称,所以f(x)=logax,在选项A中,对数函数的图像单调递增,所以a>1,所以a-1>0,所以二次函数的抛物线开口向上,20/20 抛物线的对称轴为x=−−12(a−1)=12(a−1)>0所以选项A是正确的,故答案为:A.2.(2021·浙江省高三其他模拟)已知函数的图象如图所示,则此函数可能是()A.B.C.D.【答案】A【解析】由图象对称性确定奇偶性,再由函数值的正负排除错误选项,得出正确结论.【详解】图象关于原点对称,为奇函数,选项BCD中定义域都是,不合,排除,选项A是奇函数.故选:A.思路点睛:本题考查由函数图象选择函数解析式,可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置.(2)从函数的单调性,判断图象的变化趋势;(3)从函数的奇偶性,判断图象的对称性;(4)从函数的特征点,排除不合要求的图象.考点3用图例4.(2020·全国高三其他(理))四个函数,,,,方程,,的实数根分别为,,20/20 ,则().A.B.C.D.【答案】A【解析】如图,画出四个函数的图象,由图可知,.由图可知,,故选:A.例5.(2020·天津高考真题)已知函数若函数恰有4个零点,则的取值范围是()A.B.C.D.【答案】D【解析】注意到,所以要使恰有4个零点,只需方程恰有3个实根即可,令,即与的图象有个不同交点.因为,当时,此时,如图1,与有个不同交点,不满足题意;20/20 当时,如图2,此时与恒有个不同交点,满足题意;当时,如图3,当与相切时,联立方程得,令得,解得(负值舍去),所以.综上,的取值范围为.故选:D.例6.(2019年高考全国Ⅱ卷理)设函数的定义域为R,满足,且当时,.若对任意,都有,则m的取值范围是A.B.C.D.【答案】B【解析】∵,.20/20 ∵时,;∴时,,;∴时,,,如图:当时,由解得,,若对任意,都有,则.则m的取值范围是.故选B.例7.(2017·天津高考真题(文))已知函数f(x)=|x|+2,x

10000+的老师在这里下载备课资料