2022年新高考一轮复习考点精选练习07《函数的基本性质》一、选择题已知函数f(x)=,则该函数的单调递增区间为( )A.(-∞,1]B.[3,+∞)C.(-∞,-1]D.[1,+∞)已知函数f(x)满足:①对任意x1,x2∈(0,+∞)且x1≠x2,都有>0②对定义域内的任意x,都有f(x)=f(-x),则符合上述条件的函数是( )A.f(x)=x2+|x|+1B.f(x)=-xC.f(x)=ln|x+1|D.f(x)=cosx已知函数f(x)=3x-()x,则f(x)( )A.是奇函数,且在R上是增函数B.是偶函数,且在R上是增函数C.是奇函数,且在R上是减函数D.是偶函数,且在R上是减函数已知奇函数f(x)在x>0时单调递增,且f(1)=0,若f(x-1)>0,则x的取值范围为( )A.{x|0<x<1或x>2}B.{x|x<0或x>2}C.{x|x<0或x>3}D.{x|x<-1或x>1}已知函数y=f(x)满足y=f(-x)和y=f(x+2)是偶函数,且f(1)=,设F(x)=f(x)+f(-x),则F(3)=( )A.B.C.πD.已知定义域为R的偶函数f(x)在(-∞,0]上是减函数,且f(1)=2,则不等式f(log2x)>2的解集为( )A.(2,+∞)B.(0,0.5)∪(2,+∞)C.∪(,+∞)D.(,+∞)下列函数f(x)中,满足“对任意x1,x2∈(0,+∞),当x1<x2时,都有f(x1)>f(x2)”的是( )A.f(x)=B.f(x)=(x-1)2C.f(x)=exD.f(x)=ln(x+1)已知函数f(x)对任意x∈R,都有f(x+6)+f(x)=0,y=f(x-1)的图象关于点(1,0)对称,且f(2)=4,则f(2026)=( )A.0 B.-4C.-8D.-16如果函数y=f(x)在区间I上是增函数,且函数y=在区间I上是减函数,那么称函数y=f(x)是区间I上的“缓增函数”,区间I叫做“缓增区间”.若函数f(x)=x2-x+是区间I上的“缓增函数”,则“缓增区间”I为( )A.[1,+∞)B.[0,]C.[0,1]D.[1,]已知f(x)是定义在R上的奇函数,当x≥0时,f(x)=x2+2x,若f(2-a2)>f(a),则实数a的取值范围是( )
A.(-∞,-1)∪(2,+∞)B.(-1,2)C.(-2,1)D.(-∞,-2)∪(1,+∞)答案为:C;若函数f(x)同时满足下列两个条件,则称该函数为“优美函数”:(1)∀x∈R,都有f(-x)+f(x)=0;(2)∀x1,x2∈R,且x1≠x2,都有0,设函数f(x)=(x∈[-a,a])的最大值为M,最小值为N,那么M+N=( )A.2017B.2019C.4032D.4036一、填空题若函数f(x)=ax2+bx+1是定义在[-1-a,2a]上的偶函数,则f(2a-b)=________.设函数f(x)=g(x)=x2f(x-1),则函数g(x)的单调递减区间是_______.定义在R上的函数f(x)满足f(x+y)=f(x)+f(y),f(x+2)=-f(x)且f(x)在[-1,0]上是增函数,给出下列几个命题:①f(x)是周期函数;②f(x)的图象关于直线x=1对称;③f(x)在[1,2]上是减函数;④f(2)=f(0),其中正确命题的序号是(请把正确命题的序号全部写出来).已知f(x)是奇函数,g(x)=.若g(2)=3,则g(-2)=________.设函数f(x)=+2016sinx,x∈的最大值为M,最小值为N,那么M+N=.对于函数f(x)=asinx+bx3+cx+1(a,b,c∈R),选取a,b,c的一组值计算f(1),f(-1),所得出的正确结果可能是( )A.2和1B.2和0C.2和-1D.2和-2
2022年新高考一轮复习考点精选练习07《函数的基本性质》(含详解)答案解析一、选择题答案为:B.解析:设t=x2-2x-3,由t≥0,即x2-2x-3≥0,解得x≤-1或x≥3.所以函数的定义域为(-∞,-1]∪[3,+∞).因为函数t=x2-2x-3的图象的对称轴为x=1,所以函数t在(-∞,-1]上单调递减,在[3,+∞)上单调递增.所以函数f(x)的单调递增区间为[3,+∞).答案为:A;解析:由题意得:f(x)是偶函数,在(0,+∞)上递增.对于A,f(-x)=f(x),是偶函数,且x>0时,f(x)=x2+x+1,f′(x)=2x+1>0,故f(x)在(0,+∞)上递增,符合题意;对于B,函数f(x)是奇函数,不符合题意;对于C,由x+1≠0,解得x≠-1,定义域不关于原点对称,故函数f(x)不是偶函数,不符合题意;对于D,函数f(x)在(0,+∞)上不单调递增,不符合题意,故选A.答案为:A;解析:易知函数f(x)的定义域为R且关于原点对称.∵f(-x)=3-x-()-x=()x-3x=-f(x),∴f(x)为奇函数.又∵y=3x在R上是增函数,y=-()x在R上是增函数,∴f(x)=3x-()x在R上是增函数.故选A.答案为:A;解析:∵奇函数f(x)在(0,+∞)上单调递增,且f(1)=0,∴函数f(x)在(-∞,0)上单调递增,且f(-1)=0,则-1<x<0或x>1时,f(x)>0;x<-1或0<x<1时,f(x)<0.∴不等式f(x-1)>0即-1<x-1<0或x-1>1,解得0<x<1或x>2,故选A.答案为:B.解析:由y=f(-x)和y=f(x+2)是偶函数知f(-x)=f(x),且f(x+2)=f(-x+2),则f(x+2)=f(x-2),则f(x)=f(x+4).所以F(3)=f(3)+f(-3)=2f(3)=2f(-1)=2f(1)=.故选B.解析:f(x)是R上的偶函数,且在(-∞,0]上是减函数,所以f(x)在[0,+∞)上是增函数所以f(log2x)>2=f(1)⇔f(|log2x|)>f(1)⇔|log2x|>1⇔log2x>1或log2x<-1⇔x>2或0<x<0.5.答案为:A;解析:依题意可得函数在(0,+∞)上单调递减,故由选项可得A正确.答案为:B解析:由题意可知,函数f(x)对任意x∈R,都有f(x+6)=-f(x),∴f(x+12)=f[(x+6)+6]=-f(x+6)=f(x),∴函数f(x)的周期T=12.把y=f(x-1)的图象向左平移1个单位得y=f(x-1+1)=f(x)的图象,关于点(0,0)对称,因此函数f(x)为奇函数,
∴f(2026)=f(168×12+10)=f(10)=f(10-12)=f(-2)=-f(2)=-4.故选B.答案为:D;解析:因为函数f(x)=x2-x+的对称轴为x=1,所以函数y=f(x)在区间[1,+∞)上是增函数,又当x≥1时,=x+-1,令g(x)=x+-1(x≥1),则g′(x)=-=,由g′(x)≤0,得1≤x≤,即函数=x-1+在区间[1,]上单调递减,故“缓增区间”I为[1,].答案为:C.解析:∵f(x)是奇函数,∴当x<0时,-x>0,∴f(-x)=(-x)2-2x,∴-f(x)=x2-2x,∴f(x)=-x2+2x.作出函数f(x)的大致图象如图中实线所示,结合图象可知f(x)是R上的增函数,由f(2-a2)>f(a),得2-a2>a,解得-2<a<1.答案为:B.解析:由条件(1),得f(x)是奇函数,由条件(2),得f(x)是R上的单调减函数.对于①,f(x)=sinx在R上不单调,故不是“优美函数”;对于②,f(x)=-2x3既是奇函数,又在R上单调递减,故是“优美函数”;对于③,f(x)=1-x不是奇函数,故不是“优美函数”;对于④,易知f(x)在R上单调递增,故不是“优美函数”.故选B.答案为:D.解析:由题意得f(x)==2019-.∵y=2019x+1在[-a,a]上是单调递增的,∴f(x)=2019-在[-a,a]上是单调递增的,∴M=f(a),N=f(-a),∴M+N=f(a)+f(-a)=4038--=4036.一、填空题答案为:5解析:∵函数f(x)=ax2+bx+1是定义在[-1-a,2a]上的偶函数,∴-1-a+2a=0,即a=1.∵f(x)=f(-x),∴ax2+bx+1=ax2-bx+1,∴b=0,即f(x)=x2+1.则f(2a-b)=f(2)=5.答案为:[0,1)解析:由题意知g(x)=函数图象如图所示,由图象可得函数g(x)的单调递减区间是[0,1).答案为:①②③④;解析:f(x+y)=f(x)+f(y)对任意x,y∈R恒成立.
令x=y=0,所以f(0)=0.令x+y=0,所以y=-x,所以f(0)=f(x)+f(-x).所以f(-x)=-f(x),所以f(x)为奇函数.因为f(x)在x∈[-1,0]上为增函数,又f(x)为奇函数,所以f(x)在[0,1]上为增函数.由f(x+2)=-f(x)⇒f(x+4)=-f(x+2)⇒f(x+4)=f(x),所以周期T=4,即f(x)为周期函数.f(x+2)=-f(x)⇒f(-x+2)=-f(-x).又因为f(x)为奇函数,所以f(2-x)=f(x),所以函数关于直线x=1对称.由f(x)在[0,1]上为增函数,又关于直线x=1对称,所以f(x)在[1,2]上为减函数.由f(x+2)=-f(x),令x=0得f(2)=-f(0)=f(0).答案为:-1.解析:由题意可得g(2)==3,则f(2)=1,又f(x)是奇函数,则f(-2)=-1,所以g(-2)===-1.答案为:4033.解析:f(x)=+2016sinx=+2016sinx=2017-+2016sinx.显然该函数在区间上单调递增,故最大值为f,最小值为f,所以M+N=f+f=+=4034--=4034-1=4033.答案为:B;解析:设g(x)=asinx+bx3+cx,显然g(x)为定义域上的奇函数,所以g(1)+g(-1)=0,所以f(1)+f(-1)=g(1)+g(-1)+2=2,只有B选项中两个值的和为2.