专题02直线与圆锥曲线方程【突破满分数学之秒杀技巧与答题模板】:第一步:代入消元,联立化简:第二步:计算判别式可直接利用结论:(范围、最值问题)第三步:根与系数关系表达式,第四步:利用,计算第五步:利用,计算第六步:利用,,计算弦中点第七步:利用,计算弦长和的面积进而计算原点到直线的距离
第八步:利用,,计算第九步:利用,计算【考点精选例题精析】:例1.(2020·高三二测)已知椭圆的左、右焦点分别为,是椭圆上一动点(与左、右顶点不重合)已知的内切圆半径的最大值为,椭圆的离心率为.(1)求椭圆C的方程;(2)过的直线交椭圆于两点,过作轴的垂线交椭圆与另一点(不与重合).设的外心为,求证为定值.
例2.(2020·安徽省淮北市高三一模(理)已知椭圆过点离心率为.(1)求的方程;(2)如图,若菱形内接于椭圆,求菱形面积的最小值.
例3.(2020·福建省泉州市高三质检)已如椭圆E:()的离心率为,点在E上.(1)求E的方程:(2)斜率不为0的直线l经过点,且与E交于P,Q两点,试问:是否存在定点C,使得?若存在,求C的坐标:若不存在,请说明理由
例4.(2020·北京市西城区高三一模)设椭圆,直线经过点,直线经过点,直线直线,且直线分别与椭圆相交于两点和两点.(Ⅰ)若分别为椭圆的左、右焦点,且直线轴,求四边形的面积;(Ⅱ)若直线的斜率存在且不为0,四边形为平行四边形,求证:;(Ⅲ)在(Ⅱ)的条件下,判断四边形能否为矩形,说明理由.
【达标检测】:1.(2020·高三二诊)已知椭圆的焦距为,斜率为的直线与椭圆交于两点,若线段的中点为,且直线的斜率为.(1)求椭圆的方程;(2)若过左焦点斜率为的直线与椭圆交于点为椭圆上一点,且满足,问:是否为定值?若是,求出此定值,若不是,说明理由.
2.(2020·高三二测)已知椭圆的左、右焦点分别为,是椭圆上一动点(与左、右顶点不重合)已知的内切圆半径的最大值为,椭圆的离心率为.(1)求椭圆C的方程;(2)过的直线交椭圆于两点,过作轴的垂线交椭圆与另一点(不与重合).设的外心为,求证为定值.
3.(2020·陕西省高三教学质量检测一(理))设椭圆C的方程为,O为坐标原点,A为椭团的上顶点,为其右焦点,D是线段的中点,且.(1)求椭圆C的方程;(2)过坐标原点且斜率为正数的直线交椭圆C于P,Q两点,分别作轴,轴,垂足分别为E,F,连接,并延长交椭圆C于点M,N两点.(ⅰ)判断的形状;(ⅱ)求四边形面积的最大值.