2022年高考数学一轮复习讲练测4.6 正弦定理和余弦定理(新高考浙江)(讲)解析版
加入VIP免费下载

2022年高考数学一轮复习讲练测4.6 正弦定理和余弦定理(新高考浙江)(讲)解析版

ID:944089

大小:3.41 MB

页数:18页

时间:2022-03-11

加入VIP免费下载
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天资源网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:403074932
资料简介
2022年高考数学一轮复习讲练测(新高考·浙江)第四章三角函数与解三角形专题4.6正弦定理和余弦定理(讲)【考试要求】掌握正弦定理、余弦定理及其应用【高考预测】(1)正弦定理或余弦定理独立命题;(2)正弦定理与余弦定理综合命题;(3)与三角函数的变换、三角函数的性质结合命题;(4)考查较为灵活,题型多变,选择题、填空题的形式往往独立考查正弦定理或余弦定理,解答题往往综合考查定理在确定三角形边角中的应用,多与三角形周长、面积有关;有时也会与平面向量、平面解析几何、立体几何等结合考查.【知识与素养】知识点1.正弦定理正弦定理:===2R,其中R是三角形外接圆的半径.由正弦定理可以变形为:a∶b∶c=sinA∶sinB∶sinC;a=2Rsin_A,b=2Rsin_B,c=2Rsin_C;sinA=,sinB=,sinC=等形式,以解决不同的三角形问题.面积公式S=absinC=bcsinA=acsinB【典例1】(2020·浙江高考真题)在锐角△ABC中,角A,B,C的对边分别为a,b,c,且.(I)求角B的大小;(II)求cosA+cosB+cosC的取值范围.【答案】(I);(II)【解析】(I)首先利用正弦定理边化角,然后结合特殊角的三角函数值即可确定∠B的大小;(II)结合(1)的结论将含有三个角的三角函数式化简为只含有∠A18/18 的三角函数式,然后由三角形为锐角三角形确定∠A的取值范围,最后结合三角函数的性质即可求得的取值范围.【详解】(I)由结合正弦定理可得:△ABC为锐角三角形,故.(II)结合(1)的结论有:.由可得:,,则,.即的取值范围是.【总结提升】已知两角一边可求第三角,解这样的三角形只需直接用正弦定理代入求解即可.已知两边和一边对角,解三角形时,利用正弦定理求另一边的对角时要注意讨论该角,这是解题的难点,应引起注意.已知两边和其中一边的对角,解三角形时,注意解的情况.如已知a,b,A,则A为锐角A为钝角或直角图形关系式a<bsinAa=bsinAbsinA<a<ba≥ba>ba≤b18/18 解的个数无解一解两解一解一解无解知识点2.余弦定理余弦定理:,,.变形公式cosA=,cosB=,osC=【典例2】(2021·浙江高考真题)在中,,M是的中点,,则___________,___________.【答案】【解析】由题意结合余弦定理可得,进而可得,再由余弦定理可得.【详解】由题意作出图形,如图,在中,由余弦定理得,即,解得(负值舍去),所以,在中,由余弦定理得,所以;在中,由余弦定理得.故答案为:;.18/18 【总结提升】应用余弦定理解答两类问题:【重点难点突破】考点1正弦定理【典例3】(2019·全国高考真题(文))的内角A,B,C的对边分别为a,b,c.已知bsinA+acosB=0,则B=___________.【答案】.【解析】由正弦定理,得.,得,即,故选D.【易错提醒】18/18 由正弦定理可求sinB的值,结合大边对大角,特殊角的三角函数值可求B的值.忽视角的范围,易于出错.【变式探究】(2021·宁波中学高三其他模拟)设的内角A,B,C所对的边分别为a,b,c,且,已知的面积等于10,,则___________,a的值为___________.【答案】【解析】首先利用正弦定理求得,再根据同角三角函数关系求得,最后根据三角形的面积公式列出关于的方程,解方程求得的值即可.【详解】因为,由正弦定理得,在中,,所以即,又根据,所以,又的面积等于10,,所以,所以;故答案为:;.考点2余弦定理【典例4】(2020·全国高考真题(文))的内角A,B,C的对边分别为a,b,c.已知B=150°.(1)若a=c,b=2,求的面积;(2)若sinA+sinC=,求C.【答案】(1);(2).【解析】(1)已知角和边,结合关系,由余弦定理建立的方程,求解得出18/18 ,利用面积公式,即可得出结论;(2)将代入已知等式,由两角差的正弦和辅助角公式,化简得出有关角的三角函数值,结合的范围,即可求解.【详解】(1)由余弦定理可得,的面积;(2),,,.【总结提升】已知三边,由余弦定理求,再由求角,在有解时只有一解.已知两边和夹角,余弦定理求出对对边.【变式探究】(2019·北京高考真题(文))在△ABC中,a=3,,cosB=.(Ⅰ)求b,c的值;(Ⅱ)求sin(B+C)的值.【答案】(Ⅰ);(Ⅱ).【解析】(Ⅰ)由余弦定理可得,因为,所以;因为,所以解得.(Ⅱ)由(Ⅰ)知,所以;18/18 因为为的内角,所以.因为.考点3正弦定理与余弦定理的综合运用【典例5】(2021·天津高考真题)在,角所对的边分别为,已知,.(I)求a的值;(II)求的值;(III)求的值.【答案】(I);(II)(III)【解析】(I)由正弦定理可得,即可求出;(II)由余弦定理即可计算;(III)利用二倍角公式求出的正弦值和余弦值,再由两角差的正弦公式即可求出.【详解】(I)因为,由正弦定理可得,,;(II)由余弦定理可得;(III),,,,所以.18/18 【总结提升】应熟练掌握正、余弦定理及其变形.解三角形时,有时可用正弦定理,也可用余弦定理,应注意用哪一个定理更方便、简捷就用哪一个定理.【变式探究】(2019·全国高考真题(理))的内角A,B,C的对边分别为a,b,c,设.(1)求A;(2)若,求sinC.【答案】(1);(2).【解析】(1)即:由正弦定理可得:18/18 (2),由正弦定理得:又,整理可得:解得:或因为所以,故.(2)法二:,由正弦定理得:又,整理可得:,即由,所以.考点4应用正弦定理、余弦定理判定三角形形状【典例6】(2020·全国高考真题(文))△ABC的内角A,B,C的对边分别为a,b,c,已知18/18 .(1)求A;(2)若,证明:△ABC是直角三角形.【答案】(1);(2)证明见解析【解析】(1)根据诱导公式和同角三角函数平方关系,可化为,即可解出;(2)根据余弦定理可得,将代入可找到关系,再根据勾股定理或正弦定理即可证出.【详解】(1)因为,所以,即,解得,又,所以;(2)因为,所以,即①,又②,将②代入①得,,即,而,解得,所以,18/18 故,即是直角三角形.【规律方法】1.判定三角形形状的途径:(1)化边为角,通过三角变换找出角之间的关系;(2)化角为边,通过代数变形找出边之间的关系,正(余)弦定理是转化的桥梁.2.无论使用哪种方法,都不要随意约掉公因式,要移项提取公因式,否则会有漏掉一种形状的可能.注意挖掘隐含条件,重视角的范对三角函数值的限制.【变式探究】(2021·全国高三其他模拟(文))在△中,若满足,则该三角形的形状为()A.等腰三角形B.直角三角形C.等腰直角三角形D.等腰三角形或直角三角形【答案】D【解析】运用正弦定理进行边角互化,运用诱导公式进行化简,然后判断出三角形形状.【详解】由正弦定理可得,所以,所以,所以,所以或,因为,,所以或,所以或,18/18 所以是直角三角形或等腰三角形,故选:D考点5与三角形面积有关的问题【典例7】(2020·北京高考真题)在中,,再从条件①、条件②这两个条件中选择一个作为已知,求:(Ⅰ)a的值:(Ⅱ)和的面积.条件①:;条件②:.注:如果选择条件①和条件②分别解答,按第一个解答计分.【答案】选择条件①(Ⅰ)8(Ⅱ),;选择条件②(Ⅰ)6(Ⅱ),.【解析】选择条件①(Ⅰ)根据余弦定理直接求解,(Ⅱ)先根据三角函数同角关系求得,再根据正弦定理求,最后根据三角形面积公式求结果;选择条件②(Ⅰ)先根据三角函数同角关系求得,再根据正弦定理求结果,(Ⅱ)根据两角和正弦公式求,再根据三角形面积公式求结果.【详解】选择条件①(Ⅰ)(Ⅱ)由正弦定理得:18/18 选择条件②(Ⅰ)由正弦定理得:(Ⅱ)【规律方法】1.求三角形面积的方法(1)若三角形中已知一个角(角的大小或该角的正、余弦值),结合题意求解这个角的两边或该角的两边之积,代入公式求面积.(2)若已知三角形的三边,可先求其一个角的余弦值,再求其正弦值,代入公式求面积,总之,结合图形恰当选择面积公式是解题的关键.2.已知三角形面积求边、角的方法(1)若求角,就寻求夹这个角的两边的关系,利用面积公式列方程求解.(2)若求边,就寻求与该边(或两边)有关联的角,利用面积公式列方程求解.提醒:正弦定理、余弦定理与三角函数性质的综合应用中,要注意三角函数公式的工具性作用.【变式探究】(2019·全国高考真题(文))的内角的对边分别为,已知.(1)求;(2)若为锐角三角形,且,求面积的取值范围.【答案】(1);(2).【解析】18/18 (1)根据题意,由正弦定理得,因为,故,消去得。,因为故或者,而根据题意,故不成立,所以,又因为,代入得,所以.(2)因为是锐角三角形,由(1)知,得到,故,解得.又应用正弦定理,,由三角形面积公式有:.又因,故,故.故的取值范围是考点6与三角形周长有关的问题【典例8】(2020·全国高考真题(理))中,sin2A-sin2B-sin2C=sinBsinC.(1)求A;(2)若BC=3,求周长的最大值.【答案】(1);(2).【解析】(1)利用正弦定理角化边,配凑出的形式,进而求得;18/18 (2)利用余弦定理可得到,利用基本不等式可求得的最大值,进而得到结果.【详解】(1)由正弦定理可得:,,,.(2)由余弦定理得:,即.(当且仅当时取等号),,解得:(当且仅当时取等号),周长,周长的最大值为.【规律方法】应用正弦定理、余弦定理,建立边长的方程,是解答此类问题的基本方法,解答过程中,要注意整体代换思想的应用,如果遇到确定最值问题,往往要结合均值定理求解.【变式探究】(2019·北京高考模拟(理))在中,角所对的边分别是已知.(1)求的大小;(2)若的面积为,求的周长.【答案】(1);(2).【解析】18/18 中,,由正弦定理可得,整理可得,又A为三角形内角,,所以,由B为三角形内角,可得;由的面积为,即,所以,又,由余弦定理得,所以,所以的周长为.【学科素养提升】数形结合思想我国著名数学家华罗庚曾说过:"数形结合百般好,隔裂分家万事休。""数"与"形"反映了事物两个方面的属性。我们认为,数形结合,主要指的是数与形之间的一一对应关系。数形结合就是把抽象的数学语言、数量关系与直观的几何图形、位置关系结合起来,通过"以形助数"或"以数解形"即通过抽象思维与形象思维的结合,可以使复杂问题简单化,抽象问题具体化,从而起到优化解题途径的目的.向量的几何表示,三角形、平行四边形法则,使向量具备形的特征,而向量的坐标表示和坐标运算又具备数的特征,因此,向量融数与形于一身,具备了几何形式与代数形式的“双重身份”.因此,在应用向量解决问题或解答向量问题时,要注意恰当地运用数形结合思想,将复杂问题简单化、将抽象问题具体化,达到事半功倍的效果.【典例】(2021·全国高三专题练习(理))中,内角所对的边分别是,且,则角=__________;设点是的中点,若,则线段的取值范围是__________.18/18 【答案】【解析】先由正弦定理,然后再化简、变形得,就可以求出角.求的取值范围时,先将图形补成平形四边形,然后运用余弦定及基本不等式求范围.【详解】由正弦定理及得,.因为所以所以,又所以;把补成平行四边形(如图所示),在中,,由余弦定理得等号成立,所以.又,所以.综上得.故线段的取值范围是.故答案为:;.【点睛】关键点睛:求角的关键是运用正弦定理边化角,后一个空的关键是将图形补成平行四边形后运用余弦定理及基本不等式的使用.18/18 18/18

10000+的老师在这里下载备课资料