2022年高考数学(理数)一轮考点精选练习45《用样本估计总体》一、选择题某校初三年级有400名学生,随机抽查了40名学生测试1分钟仰卧起坐的成绩(单位:次),将数据整理后绘制成如图所示的频率分布直方图.用样本估计总体,下列结论正确的是( )A.该校初三学生1分钟仰卧起坐的次数的中位数为25B.该校初三学生1分钟仰卧起坐的次数的众数为24C.该校初三学生1分钟仰卧起坐的次数超过30的人数约有80D.该校初三学生1分钟仰卧起坐的次数少于20的人数约为8已知某7个数的平均数为4,方差为2,现加入一个新数据4,此时这8个数的平均数为,方差为s2,则( )A.=4,s2<2B.=4,s2>2C.>4,s2<2D.>4,s2>2某商场在国庆黄金周的促销活动中,对10月2日9时到14时的销售额进行统计,其频率分布直方图如图所示,已知9时至10时的销售额为2.5万元,则11时到12时的销售额为( )A.6万元B.8万元C.10万元D.12万元某市重点中学奥数培训班共有14人,分为两个小组,在一次阶段考试中两个小组成绩的茎叶图如图所示,其中甲组学生成绩的平均数是88,乙组学生成绩的中位数是89,则m+n的值是( )A.10B.11C.12D.13某学校组织学生参加数学测试,成绩的频率分布直方图如图,数据的分组依次为[20,40),[40,60),[60,80),[80,100].若低于60分的人数是15,则该班的学生人数是( )A.45B.50C.55D.60
某班50位学生期中考试数学成绩的频率分布直方图如图所示,其中成绩分组区间是:[40,50),[50,60),[60,70),[70,80),[80,90),[90,100],则图中x的值等于( )A.0.12B.0.012C.0.18D.0.018某学校共有师生4000人,现用分层抽样的方法从所有师生中抽取一个容量为200的样本,调查师生对学校食堂餐饮问题的建议,已知从学生中抽取的人数为190,那么该校的教师人数为( )A.100B.150C.200D.250为了了解某地区高三学生的身体发育情况,抽查了该地区100名年龄在17~18岁的男生体重(kg),将他们的体重按[54.5,56.5),[56.5,58.5),…,[74.5,76.5]分组,得到的频率分布直方图如图所示.由图可知这100名学生中体重在[56.5,64.5)的学生人数是( )A.20B.30C.40D.50一个样本a,3,5,7的平均数是b,且a,b分别是数列{2n-2}(n∈N*)的第2项和第4项,则这个样本的方差是( )A.3B.4C.5D.6在样本频率分布直方图中,共有9个小长方形,若中间一个小长方形的面积等于其他8个小长方形的面积和的,且样本容量为140,则中间一组的频数为( )A.28B.40C.56D.60如图所示的茎叶图记录了甲、乙两组各5名工人某日的产量数据(单位:件).若这两组数据的中位数相等,且平均值也相等,则x和y的值分别为( )A.3,5B.5,5C.3,7D.5,7已知某班级部分同学一次测验的成绩统计如图,则其中位数和众数分别为( )A.95,94B.92,86C.99,86D.95,91二、填空题
某中学奥数培训班共有14人,分为两个小组,在一次阶段测试中两个小组成绩的茎叶图如图所示,其中甲组学生成绩的平均数是88,乙组学生成绩的中位数是89,则n-m的值是________.一组数据1,10,5,2,x,2,且2<x<5,若该数据的众数是中位数的倍,则该数据的方差为.若1,2,3,4,m这五个数的平均数为3,则这五个数的方差为________.某学校为了调查学生在学科教辅书方面的支出情况,抽出了一个容量为n的样本,其频率分布直方图如图所示,其中支出的钱数在[30,40)的同学比支出的钱数在[10,20)的同学多26人,则n的值为________.某学校共有教师300人,其中中级教师有192人,高级教师与初级教师的人数比为5∶4.为了解教师专业发展需求,现采用分层抽样的方法进行调查,在抽取的样本中有中级教师64人,则该样本中的高级教师人数为________.某电子商务公司对10000名网络购物者2014年度的消费情况进行统计,发现消费金额(单位:万元)都在区间[0.3,0.9]内,其频率分布直方图如图所示.(1)直方图中的a=;(2)在这些购物者中,消费金额在区间[0.5,0.9]内的购物者的人数为.
答案解析答案为:C;解析:第一组数据的频率为0.02×5=0.1,第二组数据的频率为0.06×5=0.3,第三组数据的频率为0.08×5=0.4,∴中位数在第三组内,设中位数为25+x,则x×0.08=0.5-0.1-0.3=0.1,∴x=1.25,∴中位数为26.25,故A错误.第三组数据所在的矩形最高,第三组数据的中间值为27.5,∴众数为27.5,故B错误.1分钟仰卧起坐的次数超过30的频率为0.04×5=0.2,∴超过30次的人数为400×0.2=80,故C正确.1分钟仰卧起坐的次数少于20的频率为0.02×5=0.1,∴1分钟仰卧起坐的次数少于20的人数为400×0.1=40,故D错误.故选C.答案为:A;解析:∵某7个数的平均数为4,∴这7个数的和为4×7=28,∵加入一个新数据4,∴==4,又∵这7个数的方差为2,且加入一个新数据4,∴这8个数的方差s2==<2,故选A.答案为:C;解析:设11时到12时的销售额为x万元,依题意有=,解得x=10.答案为:C;解析:∵甲组学生成绩的平均数是88,∴由茎叶图可知78+86+84+88+95+90+m+92=88×7,∴m=3,∵乙组学生成绩的中位数是89,∴n=9,∴m+n=12.答案为:B解析:∵[20,40),[40,60)的频率和为(0.005+0.01)×20=0.3,∴该班的学生人数是=50.答案为:D解析:由题意知0.054×10+10×x+0.01×10+0.006×10×3=1,解得x=0.018.答案为:C;解析:设教师人数为x,由题意知:=,解得x=200,故选C.答案为:C;解析:由频率分布直方图可得体重在[56.5,64.5)的学生的频率为(0.03+0.05+0.05+0.07)×2=0.4,则这100名学生中体重在[56.5,64.5)的学生人数为100×0.4=40.故选C.答案为:C;解析:因为样本a,3,5,7的平均数是b,且a,b分别是数列{2n-2}(n∈N*)的第2项和第4项,所以a=22-2=1,b=24-2=4,所以s2=[(1-4)2+(3-4)2+(5-4)2+(7-4)2]=5.答案为:B;解析:设中间一组的频数为x,因为中间一个小长方形的面积等于其他8个小长方形的面积和的,所以其他8组的频数和为x,由x+x=140,解得x=40.答案为:A;解析:由题意,甲组数据为56,62,65,70+x,74,乙组数据为59,61,67,60+y,78,要使两组数据中位数相等,有65=60+y,所以y=5,又平均数相同,则=,解得x=3.
答案为:B解析:由茎叶图可知,此组数据由小到大排列依次为76,79,81,83,86,86,87,91,92,94,95,96,98,99,101,103,114,共17个,故92为中位数,出现次数最多的为众数,故众数为86,故选B.答案为:6解析:由甲组学生成绩的平均数是88,可得=88,解得m=3.由乙组学生成绩的中位数是89,可得n=9,所以n-m=6.答案为:9;解析:根据题意知,该组数据的众数是2,则中位数是2÷=3,把这组数据从小到大排列为1,2,2,x,5,10,则=3,解得x=4,所以这组数据的平均数为=×(1+2+2+4+5+10)=4,方差为s2=×[(1-4)2+(2-4)2×2+(4-4)2+(5-4)2+(10-4)2]=9.答案为:2.解析:由=3,得m=5,所以这五个数的方差为[(1-3)2+(2-3)2+(3-3)2+(4-3)2+(5-3)2]=2.答案为:100.解析:由频率分布直方图可得支出的钱数在[30,40)的同学有0.038×10n=0.38n个,支出的钱数在[10,20)的同学有0.012×10n=0.12n个,又支出的钱数在[30,40)的同学比支出的钱数在[10,20)的同学多26人,所以0.38n-0.12n=0.26n=26,解得n=100.答案为:20.解析:由题意可知,高级教师有(300-192)×=60(人),抽样比k===.故该样本中高级教师的人数为60×=20.答案为:(1)3,(2)6000;解析:(1)由频率分布直方图可知:0.1×(0.2+0.8+1.5+2.0+2.5+a)=1,解得a=3.(2)消费金额在区间[0.5,0.9]内的购物者的频率为0.1×(3.0+2.0+0.8+0.2)=0.6,所以所求购物者的人数为0.6×10000=6000.