2022年高考数学(理数)一轮考点精选练习33《直线、平面的平行关系》(含详解)
加入VIP免费下载

2022年高考数学(理数)一轮考点精选练习33《直线、平面的平行关系》(含详解)

ID:944804

大小:189 KB

页数:7页

时间:2022-03-11

加入VIP免费下载
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天资源网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:403074932
资料简介
2022年高考数学(理数)一轮考点精选练习33《直线、平面的平行关系》一、选择题过平面α外的直线l,作一组平面与α相交,如果所得的交线分别为a,b,c,…,那么这些交线的位置关系为(  )A.都平行B.都相交且一定交于同一点C.都相交但不一定交于同一点D.都平行或交于同一点如图,在棱长为3的正方体ABCD-A1B1C1D1中,E,F,G分别为棱AB,CC1,DD1的中点,过点G作平面D1EF的平行截面,则正方体被截面截得的较小部分的几何体的体积为(  )A.6B.3C.D.如图,在棱长为1的正方体ABCDA1B1C1D1中,点E,F分别是棱BC,CC1的中点,P是侧面BCC1B1内一点,若A1P∥平面AEF,则线段A1P长度的取值范围是(  )A.B.C.D.[,]已知α,β为平面,a,b,c为直线,下列命题正确的是(  )A.a⊂α,若b∥a,则b∥αB.α⊥β,α∩β=c,b⊥c,则b⊥βC.a⊥b,b⊥c,则a∥cD.a∩b=A,a⊂α,b⊂α,a∥β,b∥β,则α∥β如图,在四棱锥P-ABCD中,AB⊥AD,BC∥AD,PA=AD=4,AB=BC=2,PA⊥平面ABCD,点E是线段AB的中点,点F在线段PA上,且EF∥平面PCD,直线PD与平面CEF交于点H,则线段CH的长度为(  )A.B.2C.2 D.2如图,在四棱锥PABCD中,AB⊥AD,BC∥AD,PA=AD=4,AB=BC=2,PA⊥平面ABCD,点E是线段AB的中点,点F在线段PA上,且EF∥平面PCD,直线PD与平面CEF交于点H,则线段CH的长度为(  ) A.B.2C.2D.2如图,在正方体ABCD-A1B1C1D1中,E,F分别为B1C1,C1D1的中点,点P是底面A1B1C1D1内一点,且AP∥平面EFDB,则tan∠APA1的最大值是(  )A.B.1C.D.2已知α是一个平面,m,n是两条直线,A是一个点,若m⊄α,n⊂α,且A∈m,A∈α,则m,n的位置关系不可能是(  )A.垂直B.相交C.异面D.平行已知m,n,l1,l2表示不同直线,α、β表示不同平面,若m⊂α,n⊂α,l1⊂β,l2⊂β,l1∩l2=M,则α∥β的一个充分条件是(  )A.m∥β且l1∥αB.m∥β且n∥βC.m∥β且n∥l2D.m∥l1且n∥l2有如下三个命题:①分别在两个平面内的两条直线一定是异面直线;②垂直于同一个平面的两条直线是平行直线;③过平面α的一条斜线有一个平面与平面α垂直.其中正确命题的个数为(  )A.0B.1C.2D.3已知平面α∥平面β,P是α,β外一点,过点P的直线m与α,β分别交于点A,C,过点P的直线n与α,β分别交于点B,D,且PA=6,AC=9,PD=8,则BD=(  )A.16B.24或4.8C.14D.20如图,ABCDA1B1C1D1是棱长为a的正方体,M,N分别是棱A1B1,B1C1的中点,P是棱AD上一点,AP=,过P,M,N的平面交上底面于PQ,Q在CD上,则PQ=(  )A.aB.aC.aD.a二、填空题给出下列四个命题:①平面外的一条直线与这个平面最多有一个公共点;②若平面α内的一条直线a与平面β内的一条直线b相交,则α与β相交;③若一条直线和两条平行线都相交,则这三条直线共面; ④若三条直线交于同一点,则这三条直线共面.其中真命题的序号是________.在四面体ABCD中,M,N分别是△ACD,△BCD的重心,则四面体的四个面中与MN平行的是________.设a,b是异面直线,则过不在a,b上任一点P,可作________个平面和a,b都平行.如图,平面α∥平面β∥平面γ,两条直线a,b分别与平面α,β,γ相交于点A,B,C和点D,E,F.已知AB=2cm,DE=4cm,EF=3cm,则AC的长为________cm.如图是一张矩形白纸ABCD,AB=10,AD=10,E,F分别为AD,BC的中点,现分别将△ABE,△CDF沿BE,DF折起,且A、C在平面BFDE同侧,下列命题正确的是  .(写出所有正确命题的序号)①当平面ABE∥平面CDF时,AC∥平面BFDE;②当平面ABE∥平面CDF时,AE∥CD;③当A、C重合于点P时,PG⊥PD;④当A、C重合于点P时,三棱锥P-DEF的外接球的表面积为150π.如图是一张矩形折纸ABCD,AB=10,AD=10,E,F分别为AD,BC的中点,现分别将△ABE,△CDF沿BE,DF折起,且A、C在平面BFDE同侧,下列命题正确的是.(写出所有正确命题的序号)①当平面ABE∥平面CDF时,AC∥平面BFDE;②当平面ABE∥平面CDF时,AE∥CD;③当A、C重合于点P时,PG⊥PD;④当A、C重合于点P时,三棱锥PDEF的外接球的表面积为150π. 答案解析答案为:D解析:若l∥平面α,则交线都平行;若l∩平面α=A,则交线都交于同一点A.答案为:D解析:如图,连接GC,则GC∥D1F,延长D1F交DC的延长线于M,连接EM,作CN∥EM交AD于点N,连接GN,则平面GCN为平行于平面D1EF的截面,正方体被截面截得的较小部分的几何体为D-GCN,DG=,CD=3,由tan∠DCN=tan∠DME=⇒DN=CDtan∠DCN=3×=2⇒VD-GCN=VG-CDN=××3×2=.答案为:B;解析:取B1C1的中点M,BB1的中点N,连接A1M,A1N,MN,可以证明平面AMN∥平面AEF,所以点P位于线段MN上,因为A1M=A1N==,MN==,所以当点P位于M,N处时,A1P的长度最长,当P位于MN的中点O时,A1P的长度最短,此时A1O==,所以A1O≤A1P≤A1M,即≤A1P≤,所以线段A1P长度的取值范围是,选B.答案为:D;解析:选项A中,b⊂α或b∥α,不正确.B中b与β可能斜交或b在β内,B错误.C中a∥c,a与c异面,或a与c相交,C错误.利用面面平行的判定定理,易知D正确.答案为:C;解析:如图,∵PD与平面CEF交于点H,∴平面CEF∩平面PCD=CH,∵EF∥平面PCD,∴EF∥CH,过点H作HM∥PA交AD于点M,连接CM,∵EF∩AF=F,CH∩HM=H,∴平面AEF∥平面CHM,∵平面AEF∩平面ABCD=AE,平面CHM∩平面ABCD=CM,∴AE∥CM,又BC∥AM,∴四边形ABCM为平行四边形,∴AM=2.又AD=4,∴M是AD的中点, 则H为PD的中点,∴CH===2,故选C.答案为:C.解析:∵PD与平面CEF交于点H,∴平面CEF∩平面PCD=CH,∵EF∥平面PCD,∴EF∥CH,过点H作HM∥PA交AD于点M,连接CM,∵EF∩AF=F,CH∩HM=H,∴平面AEF∥平面CHM,∵平面AEF∩平面ABCD=AE,平面CHM∩平面ABCD=CM,∴AE∥CM,又BC∥AM,∴四边形ABCM为平行四边形,∴AM=2.又AD=4,∴M是AD的中点,则H为PD的中点,∴CH===2,故选C.答案为:D;解析:如图,分别取A1D1的中点G,A1B1的中点H,连接GH,AG,AH,连接A1C1,交GH,EF于点M,N,连接AM,连接AC,交BD于点O,连接ON.易证MN綊OA,所以四边形AMNO是平行四边形,所以AM∥ON,因为AM⊄平面BEFD,ON⊂平面BEFD,所以AM∥平面BEFD,易证GH∥EF,因为GH⊄平面BEFD,EF⊂平面BEFD,所以GH∥平面BEFD,又AM∩GH=M,AM,GH⊂平面AGH,所以平面AGH∥平面BEFD,所以点P在GH上,当点P与点M重合时,tan∠APA1的值最大.设正方体的棱长为1,则A1P=,所以tan∠APA1的最大值为=2.答案为:D.解析:对于选项A,当m⊥α时,因为n⊂α,所以m⊥n,可能;对于选项B,当A∈n时,m∩n=A,可能;对于选项C,若A∉n,由异面直线的定义知m,n异面,可能;对于选项D,若m∥n,因为m⊄α,n⊂α,所以m∥α,这与m∩α=A矛盾,不可能平行,故选D.答案为:D;解析:对于选项A,当m∥β且l1∥α时,α,β可能平行也可能相交,故A不是α∥β的充分条件;对于选项B,当m∥β且n∥β时,若m∥n,则α,β可能平行也可能相交,故B不是α∥β的充分条件;对于选项C,当m∥β且n∥l2时,α,β可能平行也可能相交,故C不是α∥β的充分条件;对于选项D,当m∥l1,n∥l2时,由线面平行的判定定理可得l1∥α,l2∥α,又l1∩l2=M,由面面平行的判定定理可以得到α∥β,但α∥β时,m∥l1且n∥l2不一定成立,故D是α∥β的一个充分条件,故选D.答案为:C;解析:①分别在两个平面中的两条直线不一定是异面直线,故①错误.②此命题是直线与平面垂直的性质定理,故②正确.③可过斜线与平面α的交点作一条垂直于平面α 的直线,则斜线与垂线所确定的平面即与平面α垂直,这样的平面有且只有一个.故③正确.所以②③正确.答案为:B;解析:设BD=x,由α∥β⇒AB∥CD⇒△PAB∽△PCD⇒=.①当点P在两平面之间时,如图(1),则有=,∴x=24;②当点P在两平面外侧时,如图(2),则有=,∴x=,故选B.答案为:A;解析:因为ABCDA1B1C1D1是棱长为a的正方体,所以平面ABCD∥平面A1B1C1D1,又P是棱AD上一点,过P,M,N的平面交上底面于PQ,Q在CD上,所以MN∥PQ,又M,N分别是棱A1B1,B1C1的中点,AP=,所以CQ=,所以DP=DQ=,所以PQ==.答案为:①②③解析:①正确,因为直线在平面外,即直线与平面相交或直线平行于平面,所以最多有一个公共点.②正确,a,b有交点,则两平面有公共点,则两平面相交.③正确,两平行直线可确定一个平面,又直线与两平行直线的两交点在这两平行直线上,所以过这两交点的直线也在平面内,即三线共面.④错误,这三条直线可以交于同一点,但不在同一平面内.答案为:平面ABD与平面ABC解析:如图,取CD的中点E.连接AE,BE,由于M,N分别是△ACD,△BCD的重心,所以AE,BE分别过M,N,则EM∶MA=1∶2,EN∶BN=1∶2,所以MN∥AB.因为AB⊂平面ABD,MN⊄平面ABD,AB⊂平面ABC,MN⊄平面ABC,所以MN∥平面ABD,MN∥平面ABC.答案为:0或1解析:过P作a,b的平行线a′,b′,过a′,b′作平面α.①当a⊂α或b⊂α时,则过P与a,b都平行的平面不存在,即0个;②当a⊄α且b⊄α时,则α即为过P与a,b都平行的平面,也只有这一个.答案为:.解析:因为平面α∥平面β∥平面γ,两条直线a,b分别与平面α,β,γ相交于点A,B,C和点D,E,F,连接AD,BE,CF(图略).所以AD∥BE∥CF,所以=,因为AB=2cm,DE=4cm,EF=3cm,所以=,解得BC=cm, 所以AC=AB+BC=2+=(cm).答案为:①④;解析:在△ABE中,tan∠ABE=,在△ACD中,tan∠CAD=,所以∠ABE=∠DAC,由题意,将△ABE,△DCF沿BE,DF折起,且A,C在平面BEDF同侧,此时A、C、G、H四点在同一平面内,平面ABE∩平面AGHC=AG,平面CDF∩平面AGHC=CH,当平面ABE∥平面CDF时,得到AG∥CH,显然AG=CH,所以四边形AGHC为平行四边形,所以AC∥GH,进而可得AC∥平面BFDE,故①正确;由于折叠后,直线AE与直线CD为异面直线,所以AE与CD不平行,故②不正确;当A、C重合于点P时,可得PG=,PD=10,又GD=10,∴PG2+PD2≠GD2,所以PG与PD不垂直,故③不正确;当A,C重合于点P时,在三棱锥P-DEF中,△EFD与△FCD均为直角三角形,所以DF为外接球的直径,即R==,所以外接球的表面积为S=4πR2=4π×2=150π,故④正确.综上,正确命题的序号为①④.答案为:①④.解析:在△ABE中,tan∠ABE=,在△ACD中,tan∠CAD=,所以∠ABE=∠DAC,由题意,将△ABE,△DCF沿BE,DF折起,且A,C在平面BEDF同侧,此时A、C、G、H四点在同一平面内,平面ABE∩平面AGHC=AG,平面CDF∩平面AGHC=CH,当平面ABE∥平面CDF时,得到AG∥CH,显然AG=CH,所以四边形AGHC为平行四边形,所以AC∥GH,进而可得AC∥平面BFDE,故①正确;由于折叠后,直线AE与直线CD为异面直线,所以AE与CD不平行,故②不正确;当A、C重合于点P时,可得PG=,PD=10,又GD=10,∴PG2+PD2≠GD2,所以PG与PD不垂直,故③不正确;当A,C重合于点P时,在三棱锥PDEF中,△EFD与△FCD均为直角三角形,所以DF为外接球的直径,即R==,所以外接球的表面积为S=4πR2=4π×2=150π,故④正确.综上,正确命题的序号为①④.

10000+的老师在这里下载备课资料