2022版新高考数学人教版一轮课件:第9章 第4讲 随机事件的概率
加入VIP免费下载

2022版新高考数学人教版一轮课件:第9章 第4讲 随机事件的概率

ID:945328

大小:2.54 MB

页数:58页

时间:2022-03-11

加入VIP免费下载
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天资源网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:403074932
资料简介
必考部分第九章 计数原理、概率、随机变量及其分布 第四讲 随机事件的概率 1知识梳理·双基自测2考点突破·互动探究3名师讲坛·素养提升 1知识梳理·双基自测 知识点一 随机事件和确定事件(1)在条件S下,______________的事件,叫做相对于条件S的必然事件,简称必然事件.(2)在条件S下,______________的事件,叫做相对于条件S的不可能事件,简称不可能事件.必然要发生不可能发生 (3)必然事件和不可能事件统称为相对于条件S的确定事件,简称确定事件.(4)在条件S下,________________________的事件,叫做相对于条件S的随机事件,简称随机事件.可能发生也可能不发生 频数频率频率fn(A) 知识点三 互斥事件与对立事件事件的关系与运算定义符号表示包含关系若事件A________,则事件B____________,这时称事件B包含事件A(或称事件A包含于事件B)___________________相等关系若B⊇A,且________,则称事件A与事件B相等__________并事件(和事件)若某事件发生____________________________,则称此事件为事件A与事件B的并事件(或和事件)____________________发生一定发生B⊇A(或A⊆B)A⊇BA=B当且仅当事件A发生或事件B发生A∪B(或A+B) 定义符号表示交事件(积事件)若某事件发生__________________________________,则称此事件为事件A与事件B的交事件(或积事件)__________________互斥事件若A∩B为__________事件,则称事件A与事件B互斥____________对立事件若A∩B为_________事件,A∪B为_________,则称事件A与事件B互为对立事件__________________________当且仅当事件A发生且事件B发生A∩B(或AB)不可能A∩B=∅不可能必然事件A∩B=∅,且A∪B=Ω 概率的几个基本性质(1)概率的取值范围:________________.(2)必然事件的概率:P(A)=_____.(3)不可能事件的概率:P(A)=_____.(4)概率的加法公式:若事件A与事件B互斥,则P(A∪B)=____________.(5)对立事件的概率:若事件A与事件B互为对立事件,则A∪B为必然事件.P(A∪B)=_____,P(A)=__________.0≤P(A)≤110P(A)+P(B)11-P(B) 题组一 走出误区1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)事件发生的频率与概率是相同的.()(2)在大量重复试验中,概率是频率的稳定值.()(3)两个事件的和事件是指两个事件都得发生.()(4)掷一枚硬币两次,出现“两个正面”“一正一反”“两个反面”,这三个结果是等可能的.()(5)对立事件肯定是互斥事件、互斥事件不一定是对立事件.()×√××√ 题组二 走进教材2.(P121T4)一个人打靶时连续射击两次,事件“至少有一次中靶”的对立事件是()A.至多有一次中靶B.两次都中靶C.只有一次中靶D.两次都不中靶[解析]“至少有一次中靶”的对立事件是“两次都不中靶”.故选D.D 3.(P133T4)同时掷两个骰子,向上点数不相同的概率为______. 题组三 走向高考4.(2018·课标全国卷Ⅲ)若某群体中的成员只用现金支付的概率为0.45,既用现金支付也用非现金支付的概率为0.15,则不用现金支付的概率为()A.0.3B.0.4C.0.6D.0.7[解析]设事件A为“不用现金支付”,事件B为“既用现金支付也用非现金支付”,事件C为“只用现金支付”,则P(A)=1-P(B)-P(C)=1-0.15-0.45=0.4故选B.B A 2考点突破·互动探究 考点一随机事件的关系——自主练透(1)(2020·辽宁六校协作体期中)从装有2个红球和2个白球的口袋内任取2个球,那么互斥而不对立的两个事件是()A.“至少有1个白球”和“都是红球”B.“至少有2个白球”和“至多有1个红球”C.“恰有1个白球”和“恰有2个白球”D.“至多有1个白球”和“都是红球”例1C (2)(2021·中山模拟)从1,2,3,4,5这5个数中任取两个数,其中:①恰有一个是偶数和恰有一个是奇数;②至少有一个是奇数和两个都是奇数;③至少有一个是奇数和两个都是偶数;④至少有一个是奇数和至少有一个是偶数.上述事件中,是对立事件的是()A.①B.②④C.③D.①③C (3)设条件甲:“事件A与事件B是对立事件”,结论乙:“概率满足P(A)+P(B)=1”,则甲是乙的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件A [解析](1)对于选项A,“至少有1个白球”和“都是红球”是对立事件,不符合题意;对于选项B,“至少有2个白球”表示取出2个球都是白色的,而“至多有1个红球”表示取出的球1个红球1个白球,或者2个都是白球,二者不是互斥事件,不符合题意;对于选项C,“恰有1个白球”表示取出2个球1个红球1个白球,与“恰有2个白球”是互斥而不对立的两个事件,符合题意;对于选项D,“至多有1个白球”表示取出的2个球1个红球1个白球,或者2个都是红球,与“都是红球”不是互斥事件,不符合题意.故选C. (2)从1,2,3,4,5这5个数中任取两个数有3种情况:一奇一偶,2个奇数,2个偶数.其中“至少有一个是奇数”包含一奇一偶或2个奇数这两种情况,它与两个都是偶数是对立事件.又①中的事件可以同时发生,不是对立事件,故选C. (1)准确把握互斥事件与对立事件的概念:①互斥事件是不可能同时发生的事件,但也可以同时不发生;②对立事件是特殊的互斥事件,特殊在对立的两个事件不可能都不发生,既有且仅有一个发生.(2)判别互斥事件、对立事件一般用定义判断,不可能同时发生的两个事件为互斥事件;两个事件,若有且仅有一个发生,则这两个事件为对立事件,对立事件一定是互斥事件. 〔变式训练1〕(2021·宁夏检测)抽查10件产品,设事件A为“至少有2件次品”,则事件A的对立事件为()A.至多有2件次品B.至多有1件次品C.至多有2件正品D.至少有2件正品[解析]∵“至少有n个”的反面是“至多有n-1个”,又∵事件A“至少有2件次品”,∴事件A的对立事件为“至多有1件次品”.B 考点二随机事件的概率——多维探究角度1频率与概率(2018·北京高考)电影公司随机收集了电影的有关数据,经分类整理得到下表:例2电影类型第一类第二类第三类第四类第五类第六类电影部数14050300200800510好评率0.40.20.150.250.20.1好评率是指:一类电影中获得好评的部数与该类电影的部数的比值. (1)从电影公司收集的电影中随机选取1部,求这部电影是获得好评的第四类电影的概率;(2)随机选取1部电影,估计这部电影没有获得好评的概率;(3)电影公司为增加投资回报,拟改变投资策略,这将导致不同类型电影的好评率发生变化.假设表格中只有两类电影的好评率数据发生变化.那么哪类电影的好评率增加0.1,哪类电影的好评率减少0.1,使得获得好评的电影总部数与样本中的电影总部数的比值达到最大?(只需写出结论) 例3甲乙9883372109●9A 概率和频率的关系概率可看成频率在理论上的稳定值,它从数量上反映了随机事件发生的可能性的大小,它是频率的科学抽象,当试验次数越来越多时频率向概率靠近,只要次数足够多,所得频率就近似地当作随机事件的概率. B (2)(2021·吉林模拟)某超市随机选取1000位顾客,记录了他们购买甲、乙、丙、丁四种商品的情况,整理成如下统计表,其中“√”表示购买,“×”表示未购买.商品顾客人数甲乙丙丁100√×√√217×√×√200√√√×300√×√×85√×××98×√×× ①估计顾客同时购买乙和丙的概率;②估计顾客在甲、乙、丙、丁中同时购买3种商品的概率;③如果顾客购买了甲,则该顾客同时购买乙、丙、丁中哪种商品的可能性最大? 考点三互斥事件、对立事件的概率——师生共研(1)某商场有奖销售中,购满100元商品得1张奖券,多购多得.1000张奖券为一个开奖单位,设特等奖1个,一等奖10个,二等奖50个.设1张奖券中特等奖、一等奖、二等奖的事件分别为A、B、C.求:①P(A),P(B),P(C);②1张奖券的中奖概率;③1张奖券不中特等奖且不中一等奖的概率.例4 C 〔变式训练3〕(1)(2020·西安二模)2021年某省新高考将实行“3+1+2”模式,即语文、数学、外语必选,物理、历史二选一,政治、地理、化学、生物四选二,共有12种选课模式.某同学已选了物理,记事件A:“他选择政治和地理”,事件B:“他选择化学和地理”,则事件A与事件B()A.是互斥事件,不是对立事件B.是对立事件,不是互斥事件C.既是互斥事件,也是对立事件D.既不是互斥事件也不是对立事件A (2)根据以往统计资料,某地车主购买甲种保险的概率为0.5,购买乙种保险但不购买甲种保险的概率为0.3.则该地1位车主至少购买甲、乙两种保险中的一种的概率为________;该地1位车主甲、乙两种保险都不购买的概率为________.0.80.2 [解析](1)2021年某省新高考将实行“3+1+2”模式,即语文、数学、外语必选,物理、历史二选一,政治、地理、化学、生物四选二,共有12种选课模式.某同学已选了物理,记事件A:“他选择政治和地理”,事件B:“他选择化学和地理”,则事件A与事件B不能同时发生,但能同时不发生,故事件A和B是互斥事件,但不是对立事件,故A正确.故选A. (2)记A表示事件:该车主购买甲种保险;B表示事件:该车主购买乙种保险但不购买甲种保险;C表示事件:该车主至少购买甲、乙两种保险中的一种;D表示事件:该车主甲、乙两种保险都不购买.①由题意得P(A)=0.5,P(B)=0.3,又C=A∪B,所以P(C)=P(A∪B)=P(A)+P(B)=0.5+0.3=0.8.②因为D与C是对立事件,所以P(D)=1-P(C)=1-0.8=0.2. 3名师讲坛·素养提升 (1)(2020·浙江湖州期末,改编)现有5个不同编号的小球,其中黑色球2个,白色球2个,红色球1个,若将其随机排成一列,则相同颜色的球都不相邻的概率是______.例5用正难则反的思想求互斥事件的概率 “正难则反”的思想是一种常见的数学思想,如反证法、补集的思想都是“正难则反”思想的体现.在解决问题时,如果从问题的正面入手比较复杂或不易解决,那么尝试采用“正难则反”思想往往会起到事半功倍的效果,大大降低题目的难度.在求对立事件的概率时,经常应用“正难则反”的思想,即若事件A与事件B互为对立事件,在求P(A)或P(B)时,利用公式P(A)=1-P(B)先求容易的一个,再求另一个. 已知这100位顾客中一次购物量超过8件的顾客占55%.(1)确定x,y的值,并估计顾客一次购物的结算时间的平均值;(2)求一位顾客一次购物的结算时间不超过2分钟的概率.(将频率视为概率) 谢谢观看

10000+的老师在这里下载备课资料