2022年高考数学一轮复习讲练测3.3 应用导数研究函数的极值、最值(新高考讲)原卷版
加入VIP免费下载

2022年高考数学一轮复习讲练测3.3 应用导数研究函数的极值、最值(新高考讲)原卷版

ID:945758

大小:183.86 KB

页数:6页

时间:2022-03-11

加入VIP免费下载
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天资源网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:403074932
资料简介
2022年高考数学一轮复习讲练测(新高考·浙江)第三章导数专题3.3应用导数研究函数的极值、最值(讲)【考试要求】了解函数极值的概念及函数在某点取到极值的条件,会用导数求函数的极大值、极小值,会求闭区间上函数的最大值、最小值,会用导数解决某些实际问题.【高考预测】(1)以研究函数的单调性、单调区间等问题为主,根据函数的单调性确定参数的值或范围,与不等式、函数与方程、函数的图象相结合;(2)单独考查利用导数研究函数的某一性质以小题呈现;大题常与不等式、方程等结合考查,综合性较强.其中研究函数的极值、最值,都绕不开研究函数的单调性.(3)以研究函数的单调性、单调区间、极值(最值)等问题为主,与不等式、函数与方程、函数的图象等相结合,且有综合化更强的趋势.【知识与素养】1.函数的极值(1)函数的极小值:函数y=f(x)在点x=a的函数值f(a)比它在点x=a附近其它点的函数值都小,f′(a)=0,而且在点x=a附近的左侧f′(x)<0,右侧f′(x)>0,则点a叫做函数y=f(x)的极小值点,f(a)叫做函数y=f(x)的极小值.(2)函数的极大值:函数y=f(x)在点x=b的函数值f(b)比它在点x=b附近的其他点的函数值都大,f′(b)=0,而且在点x=b附近的左侧f′(x)>0,右侧f′(x)<0,则点b叫做函数y=f(x)的极大值点,f(b)叫做函数y=f(x)的极大值.极小值点,极大值点统称为极值点,极大值和极小值统称为极值.【典例1】(2021·河北沧州市·高三三模)已知函数,则()A.的单调递减区间为B.的极小值点为1C.的极大值为D.的最小值为2.函数的最值(1)在闭区间[a,b]上连续的函数f(x)在[a,b]上必有最大值与最小值.(2)若函数f(x)在[a,b]上单调递增,则f(a)为函数的最小值,f(b)为函数的最大值;若函数f(x)在[a,b]上单调递减,则f(a)为函数的最大值,f(b)为函数的最小值.6/6 【典例2】(2021·全国高考真题)函数的最小值为______.【重点难点突破】考点一:函数极值的辨析【典例3】(2021·广东广州市·高三三模)已知函数,则的大致图像为()A.B.C.D.【总结提升】1.函数极值的辨析问题,特别是有关给出图象研究函数性质的题目,要分清给的是f(x)的图象还是f′(x)的图象,若给的是f(x)的图象,应先找出f(x)的单调区间及极(最)值点,如果给的是f′(x)的图象,应先找出f′(x)的正负区间及由正变负还是由负变正,然后结合题目特点分析求解.2.f(x)在x=x0处有极值时,一定有f′(x0)=0,f(x0)可能为极大值,也可能为极小值,应检验f(x)在x=x0两侧的符号后才可下结论;若f′(x0)=0,则f(x)未必在x=x0处取得极值,只有确认x1

10000+的老师在这里下载备课资料