2022年高考数学一轮复习讲练测(新高考·浙江)第四章三角函数与解三角形专题4.7解三角形及其应用举例(练)【夯实基础】1.(2021·四川成都市·成都七中高一期中)如图,一辆汽车在一条水平的公路上向正西匀速行驶,在公路北侧远处一座高900米的山顶D的测得点A的在东偏南方向上过一分钟后测得点B处在山顶地的东偏南方向上,俯角为,则该车的行驶速度为()A.15米/秒B.15米/秒C.20米/秒D.20米/秒2.(2021·江西省万载中学高一期末(理))在中,已知,则的形状一定是()A.等腰三角形B.直角三角形C.等边三角形D.等腰或直角三角形3.(2021·辽宁高三其他模拟)英国数学家约翰・康威在数学上的成就是全面性的,其中“康威圆定理”是他引以为傲的研究成果之一.定理的内容是:三角形ABC的三条边长分别为a,b,c,分别延长三边两端,使其距离等于对边的长度,如图所示,所得六点仍在一个圆上,这个圆被称为康威圆.现有一边长为2的正三角形,则该三角形生成的康威圆的面积是()11/11
A.B.C.D.4.(2021·黑龙江哈尔滨市·高三其他模拟(理))某气象仪器研究所按以下方案测试一种“弹射型”气象观测仪器的垂直弹射高度:在处(点在水平地面的下方,为与水平地面的交点)进行该仪器的垂直弹射,水平地面上两个观察点,两地相距100米,,其中到的距离比到的距离远40米.地测得该仪器在处的俯角为,地测得最高点的仰角为,则该仪器的垂直弹射高度为()A.210米B.米C.米D.420米5.(2021·高一期中)如图所示,为测量山高选择A和另一座山的山顶为测量观测点,从A点测得点的仰角点的仰角以及从点测得,若山高米,则山高等于()11/11
A.米B.米C.米D.米6.(2021·浙江高二期末)已知三个内角A,B,C的对边分别为a,b,c,若其三边与三角满足关系式,则的形状是()A.等腰三角形B.直角三角形C.等边三角形D.等腰或直角三角形7.(2021·山西临汾市·高三其他模拟(文))说起延安革命纪念地景区,可谓是家喻户晓,它由宝塔山、枣园革命旧址、杨家岭革命旧址、中共中央西北局旧址、延安革命纪念馆组成.尤其宝塔山,它可是圣地延安的标志,也是中国革命的摇篮,见证了中国革命的进程,在中国老百姓的心中具有重要地位.如图,宝塔山的坡度比为(坡度比即坡面的垂直高度和水平宽度的比),在山坡处测得,从处沿山坡往上前进到达处,在山坡处测得,则宝塔的高为()A.B.C.D.8.(浙江高考真题)我国古代数学家刘徽创立的“割圆术”可以估算圆周率π,理论上能把π的值计算到任意精度.祖冲之继承并发展了“割圆术”,将π的值精确到小数点后七位,其结果领先世界一千多年,“割圆术”的第一步是计算单位圆内接正六边形的面积,.9.(湖北高考真题))如图,一辆汽车在一条水平的公路上向正西行驶,到A处时测得公路北侧一山顶D在西偏北30∘的方向上,行驶600m后到达B处,测得此山顶在西偏北75∘的方向上,仰角为30∘,则此山的高度CD=________m.11/11
10.(宁夏高考真题)为了测量两山顶M,N间的距离,飞机沿水平方向在A,B两点进行测量,A,B,M,N在同一个铅垂平面内(如示意图),飞机能够测量的数据有俯角和A,B间的距离,请设计一个方案,包括:①指出需要测量的数据(用字母表示,并在图中标出);②用文字和公式写出计算M,N间的距离的步骤.【提升能力】1.(2021·四川自贡市·高三三模(文))如图,在山脚A处测得山顶P的仰角为α,沿倾角为β的斜坡向上走b米到B处,在B处测得山顶P的仰角为γ(A、B、P、Q共面)则山高P等于()米.A.B.11/11
C.D.2.(2021·黑龙江校高三月考(理))在如图所示四边形中,,,,,,则四边形的面积为________.3.(2021·高三其他模拟(文))南宋数学家秦九韶著有《数书九章》,创造了“大衍求一术”,被称为“中国剩余定理”.他所论的“正负开方术”,被称为“秦九韶程序”.世界各国从小学、中学到大学的数学课程,几乎都接触到他的定理、定律和解题原则.科学史家称秦九韶:“他那个民族、他那个时代,并且确实也是所有时代最伟大的数学家之一”.在《数书九章》中提出“三斜求积术”,即以小斜幂,并大斜幂,减中斜幂,余半之,自乘于上:以小斜幂乘大斜帮,减上,余四约之,为实:一为从隅,开平方得积可用公式(其中a,b,c,S为三角形的三边和面积)表示.在中,a,b,c分别为角A、B、C所对的边,若,且则面积的最大值为______.4.(2021·河南高二月考(文))为测量山高.选择A和另一座山的山顶C为测量观测点.从A点测得N点的仰角,C点的仰角以及,从C点测得.已知山高米.则所求山高为___________米.11/11
5.(2021·高三三模(理))如图,某湖有一半径为的半圆形岸边,现决定在圆心O处设立一个水文监测中心(大小忽略不计),在其正东方向相距的点A处安装一套监测设备.为了监测数据更加准确,在半圆弧上的点B以及湖中的点C处,再分别安装一套监测设备,且,.定义:四边形及其内部区域为“直接监测覆盖区域”,设.则“直接监测覆盖区域”面积的最大值为________.6.(2021·江苏高一月考)已知锐角三角形内接于单位圆,且,则面积的最大值是___________.7.(2021·浙江高三其他模拟)已知,,是中点,,则___________,___________.8.(2021·北京高三其他模拟)魏晋南北朝(公元)时期,中国数学在测量学取得了长足进展.刘徽提出重差术,应用中国传统的出入相补原理,通过多次观测,测量山高水深等数值,进而使中国的测量学达到登峰造极的地步,超越西方约一千年,关于重差术的注文在唐代成书,因其第一题为测量海岛的高度和距离(图1),故题为《海岛算经》受此题启发,小清同学依照此法测量奥林匹克公园奥林匹克塔的高度和距离(示意图如图2所示),录得以下是数据(单位:米):前表却行,表高,后表却行11/11
,表间.则塔高__________米,前表去塔远近__________米.9.(2021·山西高三三模(理))如图,平面四边形内接于一个圆,且,,为钝角,.(1)求;(2)若,求的面积.10.(2021·山西太原市·高三二模(文))如图,为方便市民游览市民中心附近的“网红桥”,现准备在河岸一侧建造一个观景台,已知射线,为两边夹角为的公路(长度均超过3千米),在两条公路,上分别设立游客上下点,,从观景台到,建造两条观光线路,,测得千米,千米.11/11
(1)求线段的长度;(2)若,求两条观光线路与之和的最大值.【拓展思维】1.(2021·山东泰安市·高三其他模拟)在一个三角形中,到三个顶点距离之和最小的点叫做这个三角形的费马点,经证明它也满足,因此费马点也称为三角形的等角中心,如图,在外作等边,再作的外接圆,则外接圆与线段的交点即为费马点.若,则___________.2.(2021·四川高三月考(文))在中,,平分交于,且,则的面积的最小值为___________.3.(2021·福建厦门市·高三二模)在中,角所对的边分别为,.(1)求;(2)点在外,,,若四边形的面积为,证明:四边形为梯形.4.(2021·浙江高一期末)如图,游客从黄山风景区的景点A处下山至C处有两种路径,一种是从A沿直线步行到C,另一种是先从A乘景区观光车到B,然后从B沿直线步行到C,现有甲、乙两位游客从A处下山,甲沿AC匀速步行,速度为50米/分钟,在甲出发2分钟后,乙从A乘观光车到B,在B处停留20分钟后,再从B匀速步行到C.假设观光车匀速直线运行的速度为250米/分钟,山路AC11/11
长为1170米,经测量,.(1)求观光车路线AB的长;(2)乙出发多少分钟后,乙在观光车上与甲的距离最短.5.(上海高考真题)如图,三地有直道相通,千米,千米,千米.现甲、乙两警员同时从地出发匀速前往地,经过小时,他们之间的距离为(单位:千米).甲的路线是,速度为5千米/小时,乙的路线是,速度为8千米/小时.乙到达地后原地等待.设时乙到达地.(1)求与的值;(2)已知警员的对讲机的有效通话距离是3千米.当时,求的表达式,并判断在上得最大值是否超过3?说明理由.6.(2021·重庆市长寿中学校高三其他模拟)如图四边形中,,,,、,.(1)求;11/11
(2)求面积的最大值.从①且为锐角;②;③这三个条件中任选一个补充在上面的问题中并作答7.(2021·全国高一专题练习)如图,为了检测某工业区的空气质量,在点A处设立一个空气监测中心(大小忽略不计),在其正东方向点B处安装一套监测设备.为了使监测数据更加准确,在点C和点D处,再分别安装一套监测设备,且满足,,设.(1)当,求四边形的面积;(2)当为何值时,线段最长.8.(2021·江苏高一月考)缉私船在A处测出某走私船在方位角为(航向),距离为10海里的C处,并测得走私船正沿方位角的方向以9海里/时的速度沿直线方向航行逃往相距27海里的陆地D处,缉私船立即以v海里/时的速度沿直线方向前去截获.(方位角:从某点的指北方向线起,依顺时针方向到目标方向线之间的水平夹角)(1)若,求缉私船航行的方位角正弦值和截获走私船所需的时间;11/11
(2)缉私船是否有两种不同的航向均恰能成功截获走私船?若能,求v的取值范围,若不能请说明理由.9.(2021·广东汕头市·高三二模)随着人们生活水平的不断提高,人们对餐饮服务行业的要求也越来越高,由于工作繁忙无法抽出时间来享受美食,这样网上外卖订餐应运而生.现有美团外卖送餐员小李在A地接到两份外卖单,他须分别到B地、D地取餐,再将两份外卖一起送到C地,运餐过程不返回A地.A,B,C,D各地的示意图如图所示,,,,,,假设小李到达B、D两地时都可以马上取餐(取餐时间忽略不计),送餐过程一路畅通.若小李送餐骑行的平均速度为每小时20千米,请你帮小李设计出所有送餐路径(如:),并计算各种送餐路径的路程,然后选择一条最快送达的送餐路径,并计算出最短送餐时间为多少分钟.(各数值保留3位小数)(参考数据:,)10.(2021·江苏扬州市·高三其他模拟)如图,某生态农庄内有一直角梯形区域,,,百米,百米.该区域内原有道路,现新修一条直道(宽度忽略不计),点在道路上(异于,两点),,.(1)用表示直道的长度;(2)计划在区域内种植观赏植物,在区域内种植经济作物.已知种植观赏植物的成本为每平方百米2万元,种植经济作物的成本为每平方百米1万元,新建道路的成本为每百米1万元,求以上三项费用总和的最小值.11/11