专题6.1平面向量的概念及其运算新课程考试要求1.平面向量的实际背景及基本概念:理解平面向量及几何意义,理解零向量、向量的模、单位向量、向量相等、平行向量、向量夹角的概念.2.向量的线性运算:掌握向量加法、减法、数乘的概念,并理解其几何意义.3.理解平面向量数量积的概念及其意义,了解平面向量的数量积与向量投影的关系.4.掌握数量积与两个向量的夹角之间的关系.核心素养本节涉及所有的数学核心素养:逻辑推理(多例)、直观想象(多例)、数学运算(多例)等.考向预测(1)以考查向量的线性运算、共线为主,且主要是在理解它们含义的基础上,进一步解题,如利用向量的线性运算求参数等;(2)考查单位向量较多.(3)以考查向量的数量积、夹角、模、垂直的条件等问题为主,基本稳定为选择题或填空题,难度中等以下;(4)常常以平面图形为载体,同三角函数、解析几何等知识相结合,以工具的形式出现.【知识清单】知识点1.向量的概念1.向量:既有大小又有方向的量叫向量;向量的大小叫做向量的模.2.零向量:长度等于0的向量,其方向是任意的.3.单位向量:长度等于1个单位的向量.4.平行向量:方向相同或相反的非零向量,又叫共线向量,规定:0与任一向量共线.5.相等向量:长度相等且方向相同的向量.6.相反向量:长度相等且方向相反的向量.知识点2.平面向量的线性运算一.向量的线性运算向量运算定义法则(或几何意义)运算律加法求两个向量和的运算三角形法则(1)交换律:;(2)结合律:23/23
平行四边形法则减法求a与b的相反向量-b的和的运算叫做a与b的差三角形法则二.向量的数乘运算及其几何意义1.定义:实数λ与向量a的积是一个向量,这种运算叫向量的数乘,记作λa,它的长度与方向规定如下:①|λa|=|λ||a|;②当λ>0时,λa的方向与a的方向相同;当λ