田忌赛马与对策论
一、引入:田忌赛马齐使者如梁,孙膑以刑徒阴见,说齐使。齐使以为奇,窃载与之齐。齐将田忌善而客待之。忌数与齐诸公子驰逐重射。孙膑见其马足不甚相远,马有上、中、下辈。于是孙膑谓田忌曰:“君第重射,臣能令君胜。”田忌信然之,与王及诸公子逐射千金。及临质,孙膑曰:“今以君之下驷与彼上驷,取君上驷与彼中驷,取君中驷与彼下驷。”既驰三辈毕,而田忌一不胜而再胜,卒得王千金。于是忌进孙膑于威王。威王问兵法,遂以为师。---------《史记》卷六十五:《孙子吴起列传第五》
请用数学知识分析田忌赛马的故事,思考并回答以下问题:1.齐王和田忌出马对阵,各有几种策略,分别是:2.从总体来看,田忌输的概率为,赢的概率为。
二、对策论简介弈论(GameTheory),亦名“对策论”、“赛局理论”,属应用数学的一个分支,博弈论已经成为经济学的标准分析工具之一。目前在生物学、经济学、国际关系、计算机科学、政治学、军事战略和其他很多学科都有广泛的应用。博弈论主要研究公式化了的激励结构间的相互作用。是研究具有斗争或竞争性质现象的数学理论和方法。也是运筹学的一个重要学科。博弈论考虑游戏中的个体的预测行为和实际行为,并研究它们的优化策略。生物学家使用博弈理论来理解和预测进化论的某些结果。
博弈论是二人在平等的对局中各自利用对方的策略变换自己的对抗策略,达到取胜的目的。博弈论思想古已有之,中国古代的《孙子兵法》就不仅是一部军事著作,而且算是最早的一部博弈论著作。博弈论最初主要研究象棋、桥牌、赌博中的胜负问题,人们对博弈局势的把握只停留在经验上,没有向理论化发展。博弈论考虑游戏中的个体的预测行为和实际行为,并研究它们的优化策略。
案例一:囚徒困境假设有两个小偷A和B联合犯事、私入民宅被警察抓住。警方将两人分别置于不同的两个房间内进行审讯,对每一个犯罪嫌疑人,警方给出的政策是:如果两个犯罪嫌疑人都坦白了罪行,交出了赃物,于是证据确凿,两人都被判有罪,各被判刑8年;如果只有一个犯罪嫌疑人坦白,另一个人没有坦白而是抵赖,则以妨碍公务罪(因已有证据表明其有罪)再加刑2年,而坦白者有功被减刑8年,立即释放。如果两人都抵赖,则警方因证据不足不能判两人的偷窃罪,但可以私入民宅的罪名将两人各判入狱1年。那么小偷A、B是坦白还是抵赖?
案例二:智猪博弈假设猪圈里有一头大猪、一头小猪。猪圈的一头有猪食槽,另一头安装着控制猪食供应的按钮,按一下按钮会有10个单位的猪食进槽,但是谁按按钮就会首先付出2个单位的成本,若大猪先到槽边,大小猪吃到食物的收益比是9∶1;同时到槽边,收益比是7∶3;小猪先到槽边,收益比是6∶4。那么,在两头猪都有智慧的前提下,最终结果是小猪选择等待还是选择行动?
案例三:美女的硬币一位陌生美女主动过来和你搭讪,并要求和你一起玩个游戏。美女提议:“让我们各自亮出硬币的一面,或正或反。如果我们都是正面,那么我给你3元,如果我们都是反面,我给你1元,剩下的情况你给我2元就可以了。”听起来不错的提议。如果我是男性,无论如何我是要玩的,不过经济学考虑就是另外一回事了,这个游戏真的够公平吗?
小结:总的来说“博弈论”其本质是将日常生活中的竞争矛盾以游戏的形式表现出来,并使用数学和逻辑学的方法来分析事物的运作规律。既然有游戏的参与者那么也必然存在游戏规则的制定者。深入的了解竞争行为的本质,有助于我们分析和掌握竞争中事物之间的关系,更方便我们对规则进行制定和调整,使其最终按照我们所预期的目的进行运作。