.h1 {
FONT-WEIGHT: bold; TEXT-JUSTIFY: inter-ideograph; FONT-SIZE: 22pt; MARGIN: 17pt 0cm 16.5pt; LINE-HEIGHT: 240%; TEXT-ALIGN: justify
}
.h2 {
FONT-WEIGHT: bold; TEXT-JUSTIFY: inter-ideograph; FONT-SIZE: 16pt; MARGIN: 13pt 0cm; LINE-HEIGHT: 173%; TEXT-ALIGN: justify
}
.h3 {
FONT-WEIGHT: bold; TEXT-JUSTIFY: inter-ideograph; FONT-SIZE: 16pt; MARGIN: 13pt 0cm; LINE-HEIGHT: 173%; TEXT-ALIGN: justify
}
DIV.union {
FONT-SIZE: 14px; LINE-HEIGHT: 18px
}
DIV.union TD {
FONT-SIZE: 14px; LINE-HEIGHT: 18px
}
教学目标
知识目标:熟练掌握一元二次不等式的两种解法;理解一元二次方程、一元二次不等式和二次函数之间的关系.
能力目标:培养学生运用等价转化和数形结合等数学思想解决数学问题的能力.
德育目标:通过等与不等的对立统一关系的认识,对学生进行辨证唯物主义教育.
情感目标: 在自主探究与讨论交流过程中,培养学生的合作意识和创新精神.
教学重点:一元二次不等式的解法.
教学难点:一元二次方程、一元二次不等式和二次函数的关系.
教学过程:
(一)引入新课.
问题1:(幻灯片1)画出一次函数y=2x-7的图象,填空:
2x-7=0的解是 .不等式2x-7>0的解集是 .不等式2x-70(0时, 一元一次不等式ax+b>0的解集是{x|x>x0};
一元一次不等式ax+b0
(2)解不等式-x2+2x-2>0
学生不难想到,这两题的方法和上面完全相同,教师在巡回指导中及时提醒学生注意和上面两题的不同,由图象写出解集是难点,必要时教师在黑板上画出图象给予一定的提示或讲解.
3.至此我们掌握了用图象法来解一元二次不等式.当然我们可以仿照前面探讨“三个一次”关系的做法来探讨这里“三个二次”的关系.
引导学生分三种情况(△>0,△<0,△=0)讨论一元二次不等式ax2+bx+c>0(a>0 )与ax2+bx+c<0(a>0)的解集.
(幻灯片4)
三个二次
△>0
△=0
△0)
图 象
ax2+bx+c=0(a>0)根
x=x1 或x=x2
x1=x2=
无 解
ax2+bx+c>0(a>0)
解 集
{x|xx2}
{x|x≠ }
R
ax2+bx+c0)
解 集
{x|x10(a≠0)恒成立的条件为 .
ax2+bx+c≤0(a≠0)恒成立的条件为 .
(3)(x-a)(x-a2)