8.3 再探实际问题与二元一次方程(3) 教学目标 1、进一步经历用方程组解决实际问题的过程,体会方程组是刻画现实世界的有效数学模型;2、会用列表的方式分析问题中所蕴涵的数量关系,列出二元一次方程组;3、培养分析问题、解决问题的能力,进一步体会二元一次方程组的应用价值. 教学难点 借助列表分问题中所蕴含的数量关系。 知识重点 用列表的方式分析题目中的各个量的关系。 教学过程(师生活动) 设计理念 创设情境 最近几年,全国各地普遍出现了夏季用电紧张的局面,为疏导电价矛盾,促进居民节约用电、合理用电,各地出台了峰谷电价试点方案.电力行业中峰谷的含义是用山峰和山谷来形象地比喻用电负荷特性的变化幅度一般白天的用电比较集中、用电功率比较大,而夜里人们休息时用电比较小,所以通常白天的用电称为是高峰用电,即8:00~22:00,深夜的用电是低谷用电即22:00~次日8:00.若某地的高峰电价为每千瓦时0.56元;低谷电价为每千瓦时。.28元.八月份小彬家的总用电量为125千瓦时,总电费为49元,你知道他家高峰用电量和低谷用电量各是多少千瓦时吗? 学生独立思考,容易解答. 以一道生活热点问题引入,具有现实意义.激发学生学习兴趣,同时培养学生节约、合理用电的意识. 理解题意是关健.通过该题,旨在培养学生的读题能力和收集信息能力. 探索分析解决问题 (出示例题)如图,长青化工厂与A,B两地有公路、铁路相连.这家工厂从A地购买一批每吨1 000元的原料运回工厂,制成每吨8 000元的产品运到B地.公路运价为1. 5元(吨·千米),铁路运价为1.2元(吨·千米),这两次运输共支出公路运费15000元,铁路运费97200元.这批产品的销售款比原料费与运输费的和多多少元?(图见教材115页,图8.3-2)学生自主探索、合作交流.设问1.如何设未知数?销售款与产品数量有关,原料费与原料数量有关,而公路运费和铁路运费与产品数量和原料数量都有关.因此设产品重x吨,原料重y吨.设问2.如何确定题中数量关系?列表分析
产品x吨原料y吨合计
公路运费(元)
铁路运费(元)
价值(元)
由上表可列方程组 解这个方程组,得 因为毛利润-销售款-原料费-运输费所以这批产品的销售款比原料费与运输的和多1887800元.引导学生讨论以上列方程组解决实际问题的学生讨论、分析:合理设定未知数,找出相等关系。 本例所涉及的数据较多,数量关系较为复杂,具有一定挑战性,能激发学生探索的热情.
通过讨论让学生认识到合理设定未知数的愈义.借助表格辅助分析题中较复杂的数量关系,不失为一种好方法. 课堂练习反馈调控 某瓜果基地生产一种特色水果,若在市场上每吨利润为1000元;经粗加工后销售,每吨利润增为4500元;经精加工后销售,每吨利润可达7500元。一食品公司购到这种水果140吨,准备加工后上市销售.该公司的加工能力是:每天可以精加工6吨或者粗加工16吨,但两种加工方式不能同时进行.受季节等条件限制,公司必须将这批水果全部销售或加工完毕,为此公司研制二种可行的方案: 方案一:将这批水果全部进行粗加工;方案二:尽可能多对水果进行精加工,没来得及加工的水果在市场上销售;方案三:将部分水果进行精加工,其余进行粗加工,并恰好15天完成.你认为选择哪种方案获利最多?为什么?学生合作讨论完成 选择经济领城问题让学生展开讨论,增强市场经济意识和决策能力,同时巩固二元一次方程组的应用. 小结与作业 小结提高 1、在用一元一次方程组解决实际问题时,你会怎样设定未知数,可借助哪些方式辅助分析问题中的相等关系?2、小组讨论,试用框图概括“用一元一次方程组分析和解决实际问题”的基本过程.学生思考、讨论、整理. 这是第一次比较完整地用框图反映实际问题与二元一次方程组的关系. 让学生结合自己的解题过程概括整理,帮助理解,培养模型化的思想和应用数学于现实生活的意识. 布置作业 16、 必做题:教科书116页习题8.3第2、6题。17、 选做题:教科书117页习题8.3第9题。18、 备19、 选题:(1)一批蔬菜要运往某批发市场,菜农准备租用汽车公司的甲、乙两种货车.已知过去两次租用这两种货车的记录如下表所示.
甲种货车(辆) 乙种货车(辆) 总量(吨)
第1次 4 5 28.5
第2次 3 6 27
这批蔬菜需租用5辆甲种货车、2辆乙种货车刚好一次运完,如果每吨付20元运费,问:菜农应付运费多少元?
(2)某学校现有学生数1290人,与去年相比,男生增加20%,女生减少10%,学生总数增加7. 5%,问现在学校中男、女生各是多少?
本课教育评注(课堂设计理念,实际教学效果及改进设想) 本课探究的问题信息量大,数量关系复杂,未知数不容易设定,对学生来说是一种挑战,因此安排学生合作学习.学生先独立思考,自主探索,然后在小组讨论中合理设定未知数,借助表格分析题中的数量关系,列出方程组求得问题的解.在本节的小结中,让学生结合自己的解题过程概括整理实际问题与二元一次方程组的关系,并比较完整地用框图反映,培养模型化的思想. 同时本节向学生提供了社会热点问题、经济问题等现实、具有挑战性的、富有数学意义的学习素材,让学生展开数学探究,合作交流,树立数学服务于生活、应用于生活的意识.