天添资源网 http://www.ttzyw.com/
相似三角形应用
一:【课前预习】
(一):【知识梳理】
1.相似多边及位似图形
(1) 定义:对应角相等,对应边成比例的两个多边形叫做相似多边形.
(2) 相似多边形的性质:(1)相似多边形的周长的比等于相似比;(2)相似多边形的对应对角线的比等于相似比;(3)相似多边形的面积的比等于相似比的平方;(4)相似多边形的对应对角线相似,相似比等于相似多边形的相似比.
(3) 位似图形的定义:如果两个图形不仅是相似图形.而且每组对应点所在的直线都经过同一点,那么这样的两个图形叫做位似图形,这个点叫做位似中心,这时的相似比又叫做位似比.
2.相似的应用: 相似形的性质与识别在日常生活中有非常广泛的应用,如可应用其对应边成比例来求一些线段的长;可运用相似三角形的原理来进行测量等
(二):【课前练习】
1.下列说法正确的是( )
A.所有的矩形都是相似形 B.所有的正方形都是相似形
C.对应角相等的两个多边形相似 D.对应边成比例的两个多边形相似
2.用作位似图形的方法,可以将一个图形放大或缩小,位似中心的位置可选在( )
A.原图形的外部 B.原图形的内部 C.原图形的边上 D.任意位置
3.如图是小明做的一个风筝的支架,AB=40cm,BP=60cm,
△ABC∽△APQ的相似比是( )
A.3:2 B.2:3 C.2:5 D.3:5
4.如图,正方形的网格中,∠1+∠2+∠3+∠4+∠5
等于( )
A.175° B.180° C.210 ° D.225°
5.如图,Rt△ABC中,有三个内接正方形,DF=9cm,
GK=6cm,求第三个正方形的边长PQ.
天添资源网 http://www.ttzyw.com/
天添资源网 http://www.ttzyw.com/
二:【经典考题剖析】
1.小华同学自制了一个简易的幻灯机,其工作情况如图所示,
幻灯片与屏幕平行,光源到幻灯片的距离是30cm,幻灯片
到屏幕的距离是30㎝,幻灯片上小树的高度是10cm,则屏幕上小树的高度是( )
A.50cm B.500cm C.60cm D、600cm
2.如图是跷跷板的示意图.支柱OC与地面垂直,点O是横板AB的中点 ,AB可以绕着点O上下转动,当A端落地时,∠OAC=20°,横板上下可转动的最大角度(即∠A′OA)是( )
A.80° B.60° C.40° D.20°
3.一条河的两岸是平行的,在河的这一岸每隔5m有一棵树,在河的对岸每隔50m有一根电线杆,在这岸离开岸边25m处看对岸,看到对岸相邻的两根电线杆恰好被这岸的两棵树遮住,并且在这两棵树之间还有两棵树,求河的宽度.
4.(1)请在如图所示的方格纸中,将△ABC向上平移3格,再向右平移6格,得△A1B1C1,再将△A1B1C1绕点B1按顺时针方向旋转90°,得△A2B1C2,最后将△A2B1C2以点C2为位似中心放大到2倍,得△A3B3C2;
(2)请在方格纸的适当位置画上坐标轴(一个小正方形的边长为1个单位长度),在你所建立的直角坐标系中,点C、C1、C2的坐标分别为:点C( )、点C1( )、点C2( )、
天添资源网 http://www.ttzyw.com/
天添资源网 http://www.ttzyw.com/
5.我们已经学习了相似三角形,也知道:如果两个几何图形形状相同而大小不一定相同,我们就把它们叫做相似图形.比如两个正方形,它们的边长、对角线等所有元素都对应成比例,就可以称它们为相似图形.现给出下列4对几何图形:①两个圆;②两个菱形;③两个长方形;④两个正六边形,请指出其中哪几对是相似图形,哪几对不是相似图形,并简单地说明理由
三:【课后训练】
1.针孔成像问题:根据图中尺寸(AB∥A′B′),可以知道
物像A′B′的长与物AB的长之间的关系是____________.
2.如图,上是Rt△ABC的斜边 BC上异于 B、C的一点,过P点作直线截△ABC,使截得的三角形与△ABC相似,满足这样条件的直线共有( )条.
A.1 B.2 C.3 D.4
3.位似图形上任意一对对应点到位似中心的距离之比等于________.
4.如图,在两个直角三角形中,∠ACB=∠ADC=90°,AC=,AD=2,
那么当AB 的长等于 时,使得两个直角三角形相似.
5.有一个测量弹跳力的体育器材,如图所示,竖杆AC、BD的长度分别
为200厘米、300厘米,CD=300厘米.现有一人站在斜杆AB下方的
点E处,直立、单手上举时中指指尖(点F)到地面的高度为EF,
屈膝尽力跳起时,中指指尖刚好触到斜杆AB的点G处,此时,就
将EG与EF的差值(厘米)作为此人此次的弹跳成绩.
(1)设CE=(厘米),EF=(厘米),求出由和算出的计算公式;
(2)现有甲、乙两组同学,每组三人,每人各选择一个适当的位置尽力跳了一次,且均刚好触到斜杆,由所得公式算得两组同学弹跳成绩如下表所示,由于某种原因,甲组C同学的弹跳成绩认不清,但知他弹跳时的位置为厘米,=205厘米
天添资源网 http://www.ttzyw.com/
天添资源网 http://www.ttzyw.com/
,请你计算C同学此次的弹跳成绩,并从两组同学弹跳成绩的整齐程度比较甲、乙两组同学的弹跳成绩。
6.小颖的妈妈为小颖缝制了一个长50cm,宽30cm的矩形坐垫,又在坐垫的周围缝上了一圈宽3 cm的花边,妈妈说:“里外两个矩形是相似形”,小颖说:“这两个矩形不是相似形”你认为谁说得对,并说明你的理由.
7.某学生利用树影测松树的高度,他在某一时刻测得1.5米长的竹竿影长0.9米,但当他马上测松树高度时,因松树靠近一幢高楼,影子不是全部在地面上,有一部分影子落在墙上,他测得留在地面部分的影长是2.4米,留在墙上部分的影高是1.5米,求松树的高度.
8.如图,已知Rt△ABC与Rt△ DEF不相似,其中∠C、∠F为直角,能否分别将这两个三角形各分割成两个三角形,使AABC分成的两个三角形与ADEF所分成的两个三角形分别对应相似?如果能,请你计设出一种分割方案.
9.王明同学为了测量河对岸树AB的高度.他在河岸边放一面平面镜,他站在C处通过平面镜看到树的顶端A.如图,然后他量得B、P间的距离是56米,C、P 间距离是 12米,他的身高是1.74米.
⑴他这种测量的方法应用了物理学科
的什么知识?请简要说明;
⑵请你帮他计算出树AB的高度.
10.如图,在平面直角坐标系内,已知点A(0,6)、点B(8,0),动点P从点A开始在线段AO上以每秒1个单位长度的速度向点O移动,同时动点Q从点B开始在线段BA上以每秒2个单位长度的速度向点A移动,设点P、Q移动的时间为t秒.
(1)求直线AB的解析式;
(2)当t为何值时,△APQ与△AOB相似?
(3)当t为何值时,△APQ的面积为个平方单位?
天添资源网 http://www.ttzyw.com/
天添资源网 http://www.ttzyw.com/
四:【课后小结】
天添资源网 http://www.ttzyw.com/