3  整式
加入VIP免费下载

3.3整式例题与讲解(2013-2014学年北师大七年级上).doc

本文件来自资料包:《3  整式》

共有 1 个子文件

本文件来自资料包: 《3  整式》 共有 1 个子文件,压缩包列表如下:

注:压缩包层级关系提取自源文件,您看到的所有资料结构都和您下载的源文件一致

温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天资源网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:403074932
资料简介
‎3 整式 ‎1.单项式及有关的概念 ‎(1)单项式的定义 像3x,ab,(1+15%)m等,都是数与字母的乘积,这样的代数式叫做单项式.单独的一个数或一个字母也是单项式.‎ 谈重点 单项式 ‎①单项式中数与字母是乘积的关系,凡是字母出现在分母中的式子一定不是单项式.如是单项式,可以看做与x,y的积,而却不是单项式.整体上是和的形式的代数式也不是单项式,如2x+3xy不是单项式.‎ ‎②定义中的“数”可以是任意形式的数,可以是小数、分数、整数.‎ ‎③单独一个数或字母也是单项式,如2,-1,m都是单项式.‎ ‎(2)单项式的系数 一个单项式中的数字因数(包括前面的符号)叫做这个单项式的系数.‎ 谈重点 单项式的系数 ‎①单项式的系数包括它前面的符号,如-2ab的系数是-2.‎ ‎②单项式只含有字母因数的,它的系数是1或者-1,书写单项式时,系数1通常不写.如a的系数是1,而不能误以为是0.‎ ‎③π是常数,在单项式中相当于数字因数,因此要作为系数.‎ ‎④单项式的系数是带分数的,通常写成假分数,如xy不能写成1xy.‎ ‎(3)单项式的次数 一个单项式中所有字母的指数的和叫这个单项式的次数.‎ 谈重点 单项式的次数 ‎①单项式的次数仅与所含字母的指数有关,如2×102ab‎3c4的次数是1+3+4=8,而与102的指数2无关.‎ ‎②单项式中某个字母没有写指数,则它的指数为1,而不是0,如3y的次数是1.‎ ‎【例1】 指出下列代数式中的单项式,并说出单项式的系数和次数.‎ ,-m3n,,3,2x3+3x2-1,x2y3,2×‎102a3b‎2c.‎ 分析:代数式,2x3+3x2-1中都含有加减运算,代数式的分母中含有字母,它们都不是单项式,而-m3n,3,x2y3,2×‎102a3b‎2c符合单项式的定义,它们都是单项式.‎ 解:单项式:-m3n,3,x2y3,2×‎102a3b‎2c.‎ ‎-m3n的系数是-,次数是4;‎ ‎3的系数是3,次数是0;‎ x2y3的系数是,次数是5;‎ ‎2×‎102a3b‎2c的系数是2×102,次数是6.‎ ‎2.多项式及有关的概念 ‎(1)多项式的定义 几个单项式的和叫做多项式.‎ ‎(2)多项式的项及项数 多项式中每一个单项式叫做多项式的项.多项式中所含单项式的个数叫做这个多项式的项数,其中不含字母的项叫做常数项.‎ ‎(3)多项式的次数 一个多项式中,次数最高的项的次数叫做这个多项式的次数.‎ 谈重点 多项式 ‎①多项式中的每一项必须都是单项式,确定多项式的项数时,可以根据多项式中的“+”“-”号来区分;要注意项的符号不能丢掉.如3x-5y+2的项数是3,多项式的项分别是3x,-5y,2.‎ ‎②多项式的次数不是所有项的次数之和,而是次数最高项的次数.‎ ‎③一个多项式含有几项,最高次项是几次,就叫做几次几项式.‎ ‎④当一个多项式中各项的次数都相同时,我们称这个多项式为“齐次式”.如a2+2ab+b2是2次多项式,又称2次齐次式.‎ ‎【例2】 多项式-‎2m3‎+3n4-‎6m3‎n2+m-2n的最高次项是__________,是__________次__________项式.‎ 解析:这个多项式由五项组成,分别是-‎2m3‎,3n4,-‎6m3‎n2,m,-2n,这五项的次数分别是3,4,5,1,1,所以次数最高的项是-‎6m3‎n2,这个多项式的次数是5,所以是五次五项式.‎ 答案:-‎6m3‎n2 五 五 ‎3.整式的概念 ‎(1)定义:单项式和多项式统称为整式.‎ ‎(2)整式的判断 判断一个式子是否是整式,只需要看它是否为单项式或者多项式.若分母中含有字母,则这个式子一定不是整式.‎ ‎【例3】 下列代数式,x2+x-,,,其中整式有( ).‎ A.1个 B.2个 C.3个 D.4个 解析:根据整式的定义进行判断,整式有x2+x-,共2个.故选B.‎ 答案:B ‎4.单项式与多项式次数的运用 ‎(1)单项式的次数 单项式的次数是指单项式中所有字母的指数的和,其次数仅仅与字母的指数有关,注意区分.如-103xy2z中,其次数是1+2+1=4,与103的指数3无关,当字母中没有标注指数时,其指数为1.‎ π是数字因数,不能误以为是字母,因此,单项式的次数与π无关.‎ ‎(2)多项式的次数 一个多项式中,次数最高的项的次数叫做这个多项式的次数.判断一个多项式的次数,必须逐一计算多项式中各项的次数,再从中找出最高的次数作为多项式的次数.‎ 析规律 几次几项式的理解 几次代表这个多项式的最高次项的次数,几项就代表这个多项式有几项.如2x2-3x+2最高项是第一项,其次数是2,有三项,所以称为二次三项式.‎ ‎(3)次数与方程的综合运用 根据单项式和多项式的次数,求与指数有关的字母时,可根据条件列出方程,通过解方程求出有关的字母.‎ ‎【例4-1】 已知-5xm为四次单项式,yn-3x+1为三次多项式,求mn的值.‎ 分析:先根据单项式、多项式的次数的概念确定出m,n的值,再求出mn的值.‎ 解:因为-5xm为四次单项式,所以m=4.‎ 因为yn-3x+1为三次多项式,‎ 所以yn的次数最高,即n=3.‎ 所以mn=43=64.‎ ‎【例4-2】 已知多项式-2x2ym+1+xy2-3x3-6是六次四项式,单项式-x2ny5-m与该多项式的次数相同,求m,n的值.‎ 分析:根据多项式的次数的定义来求.因为-2x2ym+1+xy2-3x3-6是六次四项式,所以-2x2ym+1的次数是6次,即2+m+1=6;根据单项式次数的定义可求n.‎ 解:根据条件可得2+m+1=6,解得m=3.‎ 因为单项式-x2ny5-m的次数是6,‎ 所以2n+5-m=6,即2n+5-3=6,解得n=2.‎ 所以m,n的值分别是3,2.‎ ‎【例4-3】 如果xn-(m-1)x+2为三次二项式,求m2+n的值.‎ 分析:xn-(m-1)x+2为三次二项式,2是常数项,-(m-1)x为一次项,所以xn必为三次项,所以一次项-(m-1)x的系数一定为0,列方程先求出m,n的值,再求代数式的值.‎ 解:根据条件可得xn是三次项,所以n=3.‎ 又因为xn-(m-1)x+2为二项式,所以-(m-1)=0,解得m=1,所以m2+n=12+3=4.‎ ‎5.多项式的排列 将一个多项式按照某一个字母的指数从小到大(或从大到小)的顺序排列,就叫做对这个多项式按照这个字母的升幂(降幂)排列.‎ 释疑点 多项式的降幂(升幂)排列 ‎①对于一个有多个字母的多项式必须选定其中的一个字母;②认定这个字母的指数大小顺序;③在改变多项式中的单项式的位置时,一定要连同这个单项式前面的系数和符号,特别是负号,一起移动.‎ ‎【例5-1】 把多项式2x2-3x+x3按x的降幂排列是__________.‎ 解析:按照x的次数从大到小排列即可.按x的降幂排列是x3+2x2-3x.本题主要考查降幂排列的定义,就是按照x的次数从大到小的顺序排列,操作时注意带着每一项前面的符号.‎ 答案:x3+2x2-3x ‎【例5-2】 把多项式a3-b3-‎4a2b+3ab2按b的升幂排列为__________.‎ 解析:按b升幂排列,即按b的指数由小到大排列.多项式a3-b3-‎4a2b+3ab2的四项中b的指数依次是0,3,1,2,所以按字母b的升幂排列是a3-‎4a2b+3ab2-b3.‎ 答案:a3-‎4a2b+3ab2-b3‎

10000+的老师在这里下载备课资料