第27课 概 率
【课标要求】
1、能区分可能与确定事件
2、了解概率的意义
3、运用列举法计算简单事件发生的概率
4、了解用实验法求概率
5、能解决实际问题
【知识要点】
必然事件:在一定条件下,必然会发生的事件
确定事件
不可能事件:在一定条件下,一定不会发生的事件
随机事件:在一定条件下,有可能发生,也有可能不发生的事件
概率初步 概率:表示随机事件发生的可能性的大小的数值叫做概率,必然事件的概率为1,不可能事件的概率为0,随机事件的概率在0和1之间
用列举法求概率:用列表或画树形图把所有可能的结果一一列举出来,然后再求事件的概率的方法
用频率估计概率:利用多次重复试验,通过统计试验结果去估计概率
【典型例题】
例1(2011福建泉州)在一个不透明的盒子里,装有四个分别标有数字1,2,3,4的小球,它们的形状、大小、质地等完全相同.小明先从盒子里随机取出一个小球,记下数字为x;放回盒子摇匀后,再由小华随机取出一个小球,记下数字为y.
(1)用列表法或画树状图表示出(x,y)的所有可能出现的结果;
(2)求小明、小华各取一次小球所确定的点(x,y)落在反比例函数图象上的概率;
(3)求小明、小华各取一次小球所确定的数x、y满足的概率.
例2 (2012山东德州)若一个三位数的十位数字比个位数字和百位数字都大,则称这个数为“伞数”.现从1,2,3,4这四个数字中任取3个数,组成无重复数字的三位数.
(1)请画出树状图并写出所有可能得到的三位数;
(2)甲、乙二人玩一个游戏,游戏规则是:若组成的三位数是“伞数”,则甲胜;否则乙胜.你认为这个游戏公平吗?试说明理由.
【课堂检测】
1. (2012福建宁德)下列事件是必然事件的是( )。
A.从一副扑克牌中任意抽取一张牌,花色是红桃
B.掷一枚均匀的骰子,骰子停止转动后6点朝上
C.在同一年出生的367名学生中,至少有两人的生日是同一天
D.两条线段可以组成一个三角形
2. (2012福建龙岩)一个不透明的布袋里有30个球,每次摸一个,摸一次就一定摸到红球,则红球有( )。
A.15个 B.20个 C.29个 D. 30个
3. (2012福建厦门)某种彩票的中奖机会是1%,下列说法正确的是( )。
A.买1张这种彩票一定不会中奖
B.买1张这种彩票一定会中奖
C.买100张这种彩票一定会中奖
D.当购买彩票的数量很大时,中奖的频率稳定在1%
4. (2012福建南平)为验证“掷一个质地均匀的骰子,向上的点数为偶数的概率是0.5”,下列模拟实验中,不科学的是( )。
A.袋中装有1个红球一个绿球,它们除颜色外都相同,计算随机摸出红球的概率
B.用计算器随机地取不大于10的正整数,计算取得奇数的概率
C.随机掷一枚质地均匀的硬币,计算正面朝上的概率
D.如图,将一个可以自由旋转的转盘分成甲、乙、丙3个相同的扇形,转动转盘任其自由停止,计算指针指向甲的概率
第4题
第6题
5. (2012福建南平)某校举行A、B两项趣味比赛,甲、乙两名学生各自随即选择其中的一项,则他们恰好参加同一项比赛的概率是
6. (2012福建宁德)一只昆虫在如图所示的树枝上爬行,假定昆虫在每个岔路口都会随机地选择一条路径,则它停留在A叶面的概率是 .
7. (2010福建泉州)在一个黑色的布口袋里装着白、红、黑三种颜色的小球,它们除了颜色之外没有其它区别,其中白球2只、红球1只、黑球1只. 袋中的球已经搅匀.
(1)随机地从袋中摸出1只球,则摸出白球的概率是多少?
(2)随机地从袋中摸出1只球,放回搅匀再摸出第二个球.请你用画树状图或列表的方法表示所有等可能的结果,并求两次都摸出白球的概率.
8. (2012福建泉州)在一个不透明的盒子中,共有 “一白三黑”四个围棋子,其除颜色外无其他区别.
(1).随机地从盒子中提出1子,则提出的是白子的概率是多少?
(2).随机地从盒子中提出1子,不放回再提出第二子,请用画树状图或列表的方式表示出所有可能的结果,并求出恰好提出“一黑一白”的概率是多少?
【课后作业】
1. (2012福建厦门)下列事件中,是必然事件的是( )。
A. 抛掷1枚硬币,掷得的结果是正面朝上
B. 抛掷1枚硬币,掷得的结果是反面朝上
C. 抛掷1枚硬币,掷得的结果不是正面朝上就是反面朝上
D.抛掷2枚硬币,掷得的结果是1个正面朝上与1个反面朝上
2. (2012福建三明)在一个不透明的盒子里有3个分别标有数字5,6,7的小球,它们除数字外其他均相同.充分摇匀后,先摸出1个球不放回,再摸出1个球,那么这两个球上的数字之和为奇数的概率为( )。
A. B. C. D.
3. (2012福建漳州)下列说法中错误的是( )。
A.某种彩票的中奖率为1%,买100张彩票一定有1张中奖
B.从装有10个红球的袋子中,摸出1个白球是不可能事件
C.为了解一批日光灯的使用寿命,可采用抽样调查的方式
D.掷一枚普通的正六面体骰子,出现向上一面点数是2的概率是
4. (2012福建厦门)在分别写有整数1到10的10张卡片中,随机抽取1张卡片,则该卡片上的数字恰好是奇数的概率是 .
5. (2012福建龙岩)鸡蛋孵化后,小鸡为雌与雄的概率相同.如果两个鸡蛋都成功孵化,则孵出的两只小鸡中都为雄鸡的概率为 .
6. (2012福建福州)一个袋子中装有3个红球和2个绿球,这些球除了颜色外都相同,从袋子中随机摸出一个球,则摸到红球的概率为 .
7. (2012江苏盐城)现有形状、大小和颜色完全一样的三张卡片,上面分别标有数字“1”、“2”,“3”,第一次从这三张卡片中随机抽取一张,记下数字后放回,第二次再从这三张卡片中随机抽取一张并记下数字,请用列表或画树状图的方法表示出上述试验所有可能的结果,并求第二次抽取的数字大于第一次抽取的数字的概率.
8. (2012福建漳州)有A、B、C1、C2四张同样规格的硬纸片,它们的背面完全一样,正面如图1所示.将它们背面朝上洗匀后,随机抽出两张(不放回)可拼成如图2的四种图案之一.请你用画树状图或列表的方法,分析拼成哪种图案的概率最大?