第30讲 概率初步
考纲要求
命题趋势
1.能正确指出自然和社会现象中的一些必然事件、不可能事件、不确定事件.
2.能从实际问题中了解概率的意义,能用列举法计算随机事件发生的概率.
3.能用大量重复试验时的频率估计事件发生的概率.
概率是中考命题的必考点,选材多来自游戏、抽奖等生活题材,主要考查必然事件、不可能事件及随机事件的区别,用列表、画树状图法求简单事件发生的概率以及用频率估计概率,题型以填空题、选择题及解答题的形式出现.
知识梳理
一、事件的有关概念
1.必然事件
在现实生活中__________发生的事件称为必然事件.
2.不可能事件
在现实生活中__________发生的事件称为不可能事件.
3.随机事件
在现实生活中,有可能__________,也有可能__________的事件称为随机事件.
4.分类
事件
二、用列举法求概率
1.定义
在随机事件中,一件事发生的可能性__________叫做这个事件的概率.
2.适用条件
(1)可能出现的结果为__________多个;
(2)各种结果发生的可能性__________.
3.求法
(1)利用__________或__________的方法列举出所有机会均等的结果;
(2)弄清我们关注的是哪个或哪些结果;
(3)求出关注的结果数与所有等可能出现的结果数的比值,即关注事件的概率.
列表法一般应用于两个元素,且结果的可能性较多的题目,当事件涉及三个或三个以上元素时,用树形图列举.
三、利用频率估计概率
1.适用条件
当试验的结果不是有限个或各种结果发生的可能性不相等.
2.方法
进行大量重复试验,当事件发生的频率越来越靠近一个__________时,该__________就可认为是这个事件发生的概率.
四、概率的应用
概率是和实际结合非常紧密的数学知识,可以对生活中的某些现象作出评判,如解释摸奖,配紫色,评判游戏活动的公平性,数学竞赛获奖的可能性等等,还可以对某些事件作出决策.
自主测试
1.下列说法正确的是( )
A.打开电视机,正在播放新闻
B.给定一组数据,那么这组数据的中位数一定只有一个
C.调查某品牌饮料的质量情况适合普查
D.盒子里装有2个红球和2个黑球,搅匀后从中摸出两个球,一定一红一黑
2.两个正四面体骰子的各面上分别标明数字1,2,3,4,如同时投掷这两个正四面体骰子,则着地的面所得的点数之和等于5的概率为( )
A. B. C. D.
3.有一箱规格相同的红、黄两种颜色的小塑料球共1 000个.为了估计这两种颜色的球各有多少个,小明将箱子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回箱子中,多次重复上述过程后,发现摸到红球的频率约为0.6,据此可以估计红球的个数约为__________.
4.扬州市体育中考现场考试内容有三项:50米跑为必测项目;另在立定跳远、实心球(二选一)和坐位体前屈、1分钟跳绳(二选一)中选择两项.
(1)每位考生有__________种选择方案;
(2)用画树状图或列表的方法求小明与小刚选择同种方案的概率.(友情提醒:各种方案用A,B,C,…或①,②,③,…等符号来代表可简化解答过程)
考点一、事件的分类
【例1】下列事件属于必然事件的是( )
A.在1个标准大气压下,水加热到100 ℃沸腾
B.明天我市最高气温为56 ℃
C.中秋节晚上能看到月亮
D.下雨后有彩虹
解析:区分事件发生的可能性,应注意积累生活经验和一些基本常识,然后再予以判断.
答案:A
方法总结 如何判断事件发生的可能性,我们可以凭直觉判断出有些事件发生的可能性大小,有时要结合日积月累的生活经验,或者经过严谨的推理得到事实等.
触类旁通1 下列事件中,为必然事件的是( )
A.购买一张彩票,中奖
B.打开电视,正在播放广告
C.抛掷一枚硬币,正面向上
D.一个袋中只装有5个黑球,从中摸出一个球是黑球
考点二、用列举法求概率
【例2】在一个不透明的口袋中装有4张形状、大小相同的纸牌,它们分别标有数字1,2,3,4.随机地摸出一张纸牌,记下数字,然后放回,洗匀后再随机摸出一张纸牌并记下数字.
(1)计算两次摸出的纸牌上的数字之和为6的概率;
(2)甲、乙两个人玩游戏,如果两次摸出纸牌上的数字之和为奇数,则甲胜;如果两次摸出纸牌上的数字之和为偶数,则乙胜.这个游戏公平吗?请说明理由.
分析:游戏是否公平,应该根据事件发生的概率大小确定,用列表法或画树状图求出各事件发生的概率,然后再判断游戏是否公平.
解:用树状图法:
或列表法:
由上表可以看出,摸出一张纸牌然后放回,再随机摸出纸牌,可能结果有16种,它们出现的可能性相等.
(1)两次摸出纸牌上的数字之和为6(记为事件A)有3种可能结果,P(A)=.
(2)这个游戏公平,理由如下:
两次摸出纸牌上数字之和为奇数(记为事件B)有8种可能结果,P(B)==.
两次摸出纸牌上数字之和为偶数(记为事件C)有8种可能结果,P(C)==.
两次摸出纸牌上数字之和为奇数和为偶数的概率相同,所以这个游戏公平.
方法总结 1.用列举法求概率,无论是简单事件还是复杂事件,都先列举所有可能出现的结果,再代入P(A)=计算.
2.在用列举法解题时,一定要注意各种情况出现的可能性务必相同,不要出现重复、遗漏等现象.
3.判断游戏的公平性,在相同的条件下,应考虑随机事件发生的可能性是否相同,可能性大的获胜机会就大.
触类旁通2 甲、乙、丙、丁四位同学进行一次乒乓球单打比赛,要从中选出两位同学打第一场比赛,
(1)请用树状图法或列表法,求恰好选中甲、乙两位同学的概率;
(2)若已确定甲打第一场,再从其余三位同学中随机选取一位,求恰好选中乙同学的概率.
考点三、频率与概率
【例3】小明在学习了统计与概率的知识后,做了投掷骰子的试验,小明共做了100次试验,试验的结果如下:
朝上的点数
1
2
3
4
5
6
出现的次数
17
13
15
23
20
12
(1)试求“4点朝上”和“5点朝上”的频率;
(2)由于“4点朝上”的频率最大,能不能说一次试验中“4点朝上”的概率最大?为什么?
解:(1)“4点朝上”出现的频率是=0.23.
“5点朝上”出现的频率是=0.20.
(2)不能这样说,因为“4点朝上”的频率最大并不能说明“4点朝上”这一事件发生的概率最大,只有当试验的次数足够多时,该事件发生的频率才稳定在事件发生的概率附近.
方法总结 在大量重复试验中,随着统计数据的增大,频率稳定在某个常数左右,将该常数作为概率的估计值,两者的区别在于:频率是通过多次试验得到的数据,而概率是理论上事件发生的可能性,二者并不完全相同.
触类旁通3 某质检员从一大批种子中抽取若干批,在同一条件下进行发芽试验,有关数据如下:
种子粒数
50
100
200
500
1 000
3 000
5 000
发芽种子粒数
45
92
184
458
914
2 732
4 556
发芽频率
(1)计算各批种子发芽频率,填入上表.
(2)根据频率的稳定性估计种子的发芽概率.
考点四、概率的应用
【例4】在一副扑克牌中取牌面花色分别为黑桃、红心、方块各一张,洗匀后正面朝下放在桌面上.
(1)从这三张牌中随机抽取一张牌,抽到牌面花色为红心的概率是多少?
(2)小王和小李玩摸牌游戏,游戏规则如下:先由小王随机抽出一张牌,记下牌面花色后放回,洗匀后,再由小李随机抽出一张牌,记下牌面花色.当两张牌面的花色相同时,小王赢;当两张牌面的花色不相同时,小李赢.请你利用树状图或列表法分析该游戏规则对双方是否公平?并说明理由.
解:(1)P(抽到牌面花色为红心)=.
(2)游戏规则不公平.
理由如下:
由树状图或表格知:所有可能出现的结果共有9种.
P(抽到牌面花色相同)==,
P(抽到牌面花色不相同)==.
∵<,∴此游戏不公平,小李赢的可能性大.
方法总结 游戏公平与否,关键是根据规则算出各自的概率,概率均等则游戏公平,否则就不公平.设计游戏规则时,应先根据题意求出随机事件的各种可能出现的情况的概率,再根据其中概率相等时的情况设计公平的游戏规则,也可根据概率不相等时的情况设计公平的游戏规则.
触类旁通4 (1)四张质地、大小、背面完全相同的卡片上,正面分别画有圆、矩形、等边三角形、等腰梯形四个图案.现把它们的正面向下随机摆放在桌面上,从中任意抽出一张,则抽出的卡片正面图案是中心对称图形的概率为( )
A. B. C. D.1
(2)5月19日为中国旅游日,衢州推出“读万卷书,行万里路,游衢州景”
的主题系列旅游惠民活动,市民王先生准备在优惠日当天上午从孔氏南宗庙、烂柯河、龙游石窟中随机选择一个地点;下午从江郎山、三衢石林、开化根博园中随机选择一个地点游玩.则王先生恰好上午选中孔氏南宗庙,下午选中江郎山这两个地点的概率是( )
A. B. C. D.
1.(2012浙江宁波)一个不透明口袋中装着只有颜色不同的1个红球和2个白球,搅匀后从中摸出一个球,摸到白球的概率为( )
A. B. C. D.1
2.(2012浙江义乌)义乌国际小商品博览会某志愿小组有五名翻译,其中一名只会翻译阿拉伯语,三名只会翻译英语,还有一名两种语言都会翻译.若从中随机挑选两名组成一组,则该组能够翻译上述两种语言的概率是( )
A. B. C. D.
3.(2012浙江杭州)一个不透明的盒子中装有2个红球和1个白球,它们除颜色外都相同.若从中任意摸出一个球,则下列叙述正确的是( )
A.摸到红球是必然事件
B.摸到白球是不可能事件
C.摸到红球与摸到白球的可能性相等
D.摸到红球比摸到白球的可能性大
4.(2012四川攀枝花)抛掷一枚质地均匀、各面分别标有1,2,3,4,5,6的骰子,正面向上的点数是偶数的概率是__________.
5.(2012湖南长沙)任意抛掷一枚硬币,则“正面朝上”是__________事件.
6.(2012四川达州)如下图,在某十字路口,汽车可直行、可左转、可右转.若这三种可能性相同,则两辆汽车经过该路口都向右转的概率为__________.
7.(2012湖南益阳)有长度分别为2 cm,3 cm,4 cm,7 cm的四条线段,任取其中三条能组成三角形的概率是__________.
8.(2012福建泉州)在一个不透明的盒子中,共有“一白三黑”4个围棋子,它们除了颜色之外没有其他区别.
(1)随机地从盒中提出1子,则提出白子的概率是多少?
(2)随机地从盒中提出1子,不放回再提第二子,请你用画树状图或列表的方法表示所有等可能的结果,并求恰好提出“一黑一白”子的概率.
1.某中学举行数学竞赛,经预赛,七、八年级各有一名同学进入决赛,九年级有两名同学进入决赛,那么九年级同学获得前两名的概率是( )
A. B. C. D.
2.在一个不透明的盒子中装有8个白球,若干个黄球,它们除颜色不同外,其余均相同.若从中随机摸出一个球,它是白球的概率为,则黄球的个数为( )
A.2 B.4 C.12 D.16
3.已知抛一枚均匀硬币正面朝上的概率为,下列说法错误的是( )
A.连续抛一枚均匀硬币2次必有1次正面朝上
B.连续抛一枚均匀硬币10次都可能正面朝上
C.大量反复抛一枚均匀硬币,平均100次出现正面朝上50次
D.通过抛一枚均匀硬币确定谁先发球的比赛规则是公平的
4.在x22xyy2的空格中,分别填上“+”或“-”,在所得的代数式中,能构成完全平方式的概率是( )
A.1 B.
C. D.
5.在半径为2的圆中有一个内接正方形,现随机地往圆内投一粒米,落在正方形内的概率为__________.(注:π取3)
6.从-2,-1,2这三个数中任取两个不同的数作为点的坐标,该点在第四象限的概率是__________.
7.如图所示,一个圆形转盘被等分为八个扇形区域,上面分别标有数字1,2,3,4,转盘指针的位置固定,转动转盘后任其自由停止.转动转盘一次,当转盘停止转动时,记指针指向标有“3”所在区域的概率为P(3),指针指向标有“4”所在区域的概率为P(4),则P(3)__________P(4).(填“>”、“<”或“=”)
8.某市准备为青少年举行一次网球知识讲座,小明和妹妹都是网球球迷,要求爸爸去买门票,但爸爸只买回一张门票,那么谁去就成了问题,小明想到一个办法:他拿出一个装有质地、大小相同的2x个红球与3x个白球的袋子,让爸爸摸出一个球,如果摸出的是红球,妹妹去听讲座,如果摸到的是白球,小明去听讲座.
(1)爸爸说这个办法不公平,请你用概率的知识解释原因;
(2)若爸爸从袋中取出3个白球,再用小明提出的办法来确定谁去听讲座,请问摸球的结果是对小明有利还是对妹妹有利,说明理由.
参考答案
导学必备知识
自主测试
1.B 2.A 3.600
4.解:(1)4
(2)把4种方案分别列为:
A:立定跳远、坐位体前屈;B:实心球、1分钟跳绳;C:立定跳远、1分钟跳绳;D:实心球、坐位体前屈.
画树状图如下:
∴P(小明与小刚选择同种方案)==.
探究考点方法
触类旁通1.D
触类旁通2.解:(1)列表法如下:
甲
乙
丙
丁
甲
乙甲
丙甲
丁甲
乙
甲乙
丙乙
丁乙
丙
甲丙
乙丙
丁丙
丁
甲丁
乙丁
丙丁
所有可能出现的情况有12种,其中甲、乙两位同学组合的情况有两种,所以P==.
(2)若已确定甲打第一场,再从其余三位同学中随机选取一位,共有3种情况,选中乙的情况有一种,所以P(恰好选中乙同学)=.
触类旁通3.解:(1)通过计算,发芽频率从左到右依次为:0.9,0.92,0.92,0.916,0.914,0.911,0.911.
(2)由(1)知,发芽频率逐渐稳定在0.911,因此可以估计种子的发芽概率为0.911.
触类旁通4.(1)B 在四个图案中,是中心对称图形的图案有2个,所以正面图案是中心对称图形的概率为.
(2)A 列树形图可知共有9种等可能的结果,所以上午选中孔氏南宗庙,下午选中江郎山这两个地点的概率是.
品鉴经典考题
1.A 因为根据题意可得:一个不透明口袋中装着只有颜色不同的1个红球和2个白球,共3个,任意摸出1个,摸到白球的概率是2÷3=.
2.B ∵将一名只会翻译阿拉伯语用A表示,三名只会翻译英语都用B表示,一名两种语言都会翻译用C表示,画树状图得:
∵共有20种等可能的结果,该组能够翻译上述两种语言的有14种情况,
∴该组能够翻译上述两种语言的概率为=.
3.D 摸到红球是随机事件,故选项A错误;
摸到白球是随机事件,故选项B错误;
根据不透明的盒子中装有2个红球和1个白球,得出摸到红球比摸到白球的可能性大,故选项C错误;
根据不透明的盒子中装有2个红球和1个白球,得出摸到红球比摸到白球的可能性大,故选项D正确.
4. 因为所有的可能有1,2,3,4,5,6,是偶数的可能有2,4,6,所以概率为P==.
5.随机 因为抛掷1枚均匀硬币可能正面朝上,也可能反面朝上,故抛掷1枚均匀硬币正面朝上是随机事件.
6. 因为所有可能有:直行、直行;直
行、左转;直行、右转;左转、直行;左转、左转;左转、右转;右转、直行;右转、左转;右转、右转.两辆汽车都向右转只有一次,所以概率为P=.
7. 因为长度为2 cm,3 cm,4 cm,7 cm的四条线段,从中任取三条线段共有2,3,4;3,4,7;2,4,7;3,4,7四种情况,而能组成三角形的有2,3,4,共有1种情况,
所以能组成三角形的概率是.
8.解:(1)P(白子)=.
(2)方法一:所有等可能的结果,画树状图如下:
∴P(一黑一白)==.
方法二:所有等可能的结果,列表如下.
∴P(一黑一白)==.
研习预测试题
1.D 2.B 3.A 4.C 5. 6. 7.>
8.解:(1)∵P(小明胜)=,P(妹妹胜)=,
∴P(小明胜)≠P(妹妹胜).
∴这个办法不公平.
(2)当x>3时对小明有利,当x<3时对妹妹有利,
当x=3时是公平的.