第六章 数据的分析
6.1平均数
一、问题引入:
1、一般地,对于n个数,我们把 叫做这n个数的算术平均数(mean),简称 ,记为 ,读作 .
2、在实际问题中,一组数据的各个数据的 未必相同.因而,在计算这组数据的平均数时,往往给每个数据一个 .如例1中4、3、1分别是创新、综合知识、语言三项测试成绩的权(weight),而称为A的三项测试成绩的 .
二、基础训练:
1、数据2、3、4、1、2的平均数是________,这个平均数叫做_________平均数.
2、一组数据的平均数是3,将这组数据每个数都扩大2倍,则所得一组新数据的平均数是( )
A. 3 B. 5 C. 6 D. 无法确定
3、如果一组数据5, -2, 0, 6, 4, 的平均数为6,那么等于( )
A. 3 B. 4 C. 23 D. 6
4、某市的7月下旬最高气温统计如下
气温
35度
34度
33度
32度
28度
天数
2
3
2
2
1
(1)在这十个数据中,34的权是 ,32的权是______.
(2)该市7月下旬最高气温的平均数是 ,这个平均数是_________平均数.
5、一个班级40人,数学老师第一次统计这个班级的平均成绩为85分,在复查时发现漏记了一个学生的成绩80分,那么这个班级学生的实际平均成绩应为 ( )
A. 83分 B. 85分 C. 87分 D. 84分
三、 例题展示:
例:小明骑自行车的速度是15km/h,步行的速度是5km/h
(1)如果小明先骑自行车1h,然后又步行了1h,那么他的平均速度是 .
(2)如果小明先骑自行车2h,然后又步行了3h,那么他的平均速度是 .
四、课堂检测:
1、在一次知识竞赛中,10名学生的得分如下:80,84,78,76,88,97,82,67,75,71,则他们的平均成绩为 。
2、一个地区某月前两周从星期一到星期五各天的最低气温依次是(单位:℃):x1, x2, x3, x4, x5和x1+1, x2+2, x3+3, x4+4, x5+5,若第一周这五天的平均最低气温为7℃,则第二周这五天的平均最低气温为 。
3、有10个数据的平均数为12,另有20个数据的平均数为15,那么所有这30个数据的平均数是( )
A.12 B. 15 C. 13.5 D. 14
4、八年级一班有学生50人,八年级二班有学生40人,一次考试中,一班的平均分是81,二班的平均分是90,则这两个班的90位学生的平均分是( )
A.85 B.85.5 C.86 D.87
5、将一组数据中的每一个数减去50后,所得新的一组数据的平均数是2,则原来那组数据的平均数是 ( )
A. 50 B. 52 C. 48 D. 2
6、某校规定学生的体育成绩由三部分组成:早锻炼及体育课外活动占成绩的20%,体育理论测试占30%,体育技能测试占50%。小颖的上述三项成绩依次为92分、80分、84分,则小颖这学期的体育成绩是多少?
7、一名射击运动员射靶若干次,平均每次射中8.5环,以知每次射中10环,9环,8环的次数分别为2,4,4,其余都是射中7环的数,则射中7环的次数和射靶总次数分别是多少?