贵阳市修文华驿中学教学案 朱文艺 打造我们自己的品牌
思考与收获
第31课时 矩形、菱形、正方形(一)
【知识梳理】
1.矩形的性质:(1)矩形的四个角都是直角;(2)矩形的对角线相等.
2. 矩形的判定:(1)有一个角是90°的平行四边形;(2)三个角是直角的四边形;(3)对角线相等的平行四边形.
3. 菱形的性质:(1)四边相等;(2)对角线互相垂直,并且每一条对角线平分一组对角.
4.菱形的判定:(1)一组邻边相等的平行四边形;(2)四边相等的四边形;(3)对角线互相垂直的平行四边形.
5.正方形的性质:正方形具有矩形和菱形的性质.
6.正方形的判定:(1)一组邻边相等的矩形;(2)有一个角是直角的菱形.
【例题精讲】
例题1. 将平行四边形纸片ABCD按如图方式折叠,使点C与A重合,点D落到D′ 处,折痕为EF.(1)求证:△ABE≌△AD′F;
(2)连接CF,判断四边形AECF是什么特殊四边形?证明你的结论.
A
B
C
D
E
F
D'′
例题2.如图,正方形ABCD和正方形A′OB′C′是全等图形,则当正方形A′OB′C′绕正方形ABCD的中心O顺时针旋转的过程中.
(1)证明:CF=BE;
(2)若正方形ABCD的面积是4,求四边形OECF的面积.
例题3.如图,将矩形纸片ABCD沿对角线AC折叠,使点B落到点B′的位置,AB′与CD交于点E.
(1)试找出一个与△AED全等的三角形,并证明.
(2)若AB=8,DE=3,P为线段AC上的任意一点,PG⊥AE于G,PH⊥EC于H,试求PG+PH的值,并说明理由.
—◇◇ 3 ◇◇—
贵阳市修文华驿中学教学案 朱文艺 打造我们自己的品牌
思考与收获
例题4. 如图,在矩形ABCD中,AB=12,AC=20,两条对角线相交于点O.以OB、OC为邻边作第1个平行四边形OBB1C,对角线相交于点A1,再以A1B1、A1C为邻边作第2个平行四边形A1B1C1C,对角线相交于点O1;再以O1B1、O1C1为邻边作第3个平行四边形O1B1B2C1……依次类推.
(1)求矩形ABCD的面积;
(2)求第1个平行四边形OBB1C、第2个平行四边形A1B1C1C和第6个平行四边形的面积.
【当堂检测】
1. 如果菱形的边长是a,一个内角是60°,那么菱形较短的对角线长等于( ) A.a B.a C.a D.a
2.在菱形ABCD中,AB = 5,∠BCD =120°,则对角线AC等于( )
A.20 B.15 C.10 D.5
A′
G
D
B
C
A
第3题图
3. 如图,菱形ABCD的周长为20cm,DE⊥AB,垂足为E,,则下列结论①DE=3cm;②EB=1cm;③中正确的个数为( )A.3个 B.2个 C.1个 D.0个
4. 如图,矩形纸片ABCD中,AB=4,AD=3,折叠纸片使AD边与对角线BD重合,折痕为DG,则AG的长为( )
第4题图
A.1 B. C. D.2
A
D
E
P
C
B
F
6. 如图,在菱形ABCD中,∠A=110°,E,F分别是边AB和BC的中点,EP⊥CD于点P,求∠FPC的度数.
第5题图
—◇◇ 3 ◇◇—
贵阳市修文华驿中学教学案 朱文艺 打造我们自己的品牌
—◇◇ 3 ◇◇—