2.8有理数的乘法(2)教案
加入VIP免费下载

本文件来自资料包: 《2.8有理数的乘法(2)教案》 共有 1 个子文件,压缩包列表如下:

注:压缩包层级关系提取自源文件,您看到的所有资料结构都和您下载的源文件一致

温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天资源网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:403074932
资料简介
‎§2.8有理数的乘法(2)‎ 一、课题 §2.8有理数的乘法(2) ‎ 二、教学目标 ‎1.使学生掌握多个有理数相乘的积的符号法则;‎ ‎2.掌握有理数乘法的运算律,并利用运算律简化乘法运算;‎ ‎3.培养学生观察、归纳、概括及运算能力.‎ 三、教学重点和难点 重点:乘法的符号法则和乘法的运算律.‎ 难点:积的符号的确定.‎ 四、教学手段 现代课堂教学手段 五、教学方法 启发式教学 六、教学过程 ‎(一)、从学生原有认知结构提出问题 ‎1.叙述有理数乘法法则.‎ ‎2.计算(五分钟训练):‎ ‎(1)(-2)×3;  (2)(-2)×(-3);  (3)4×(-1.5);  (4)(-5)×(-2.4);‎ ‎(5)29×(-21);  (6)(-2.5)×16;  (7) 97×0×(-6);‎ ‎(17)1×2×3×4×(-5);  (18)1×2×3×(-4)×(-5);‎ ‎(19)1×2×(-3)×(-4)×(-5);  (20)1×(-2)×(-3)×(-4)×(-5);‎ ‎(21)(-1)×(-2)×(-3)×(-4)×(-5).‎ ‎(二)、讲授新课 ‎1.几个有理数相乘的积的符号法则 引导学生观察上面各题的计算结果,找一找积的符号与什么有关?‎ ‎(17),(19),(21)等题积为负数,负因数的个数是奇数个;(18),(20)等题积为正数,负因数个数是偶数个.‎ 是不是规律?再做几题试试:‎ ‎(1)3×(-5);  (2)3×(-5)×(-2);  (3)3×(-5)×(-2)×(-4);‎ ‎(4)3×(-5)×(-2)×(-4)×(-3);(5)3×(-5)×(-2)×(-4)×(-3)×(-6).‎ 同样的结论:当负因数个数是奇数时,积为负;当负因数个数是偶数时,积为正.‎ 再看两题:‎ ‎(1)(-2)×(-3)×0×(-4);  (2)2×0×(-3)×(-4).‎ 结果都是0.‎ 引导学生由以上计算归纳出几个有理数相乘时积的符号法则:‎ 几个不等于0的数相乘,积的符号由负因数的个数决定.当负因数有奇数个时,积为负;当负因数有偶数个时,积为正.‎ 几个有理数相乘,有一个因数为0,积就为0.‎ 继而教师强调指出,这样以后进行有理数乘法运算时必须先根据负因数个数确定积的符号后,再把绝对值相乘,即先定符号后定值.‎ 注意:第一个因数是负数时,可省略括号.‎ 例2  计算:‎ ‎(1) 8+5×(-4);  (2)(-3)×(-7)-9×(-6).‎ 解:(1)  8+5×(-4)‎ ‎=8+(-20)‎ ‎=-12;                                  (先乘后加)‎ ‎(2)  (-3)×(-7)-9×(-6)‎ ‎=21-(-54)‎ ‎=75.                                   (先乘后减)‎ 通过例1、例2教师小结:在有理数乘法中,首先要掌握积的符号法则,当符号确定后又归结到小学数学的乘法运算上,四则运算顺序也同小学一样,先进行第二级运算,再进行第一级运算,若有括号先算括号里的式子.‎ 课堂练习 ‎(1)判断下列积的符号(口答):‎ ‎①(-2)×3×4×(-1);  ②(-5)×(-6)×3×(-2);‎ ‎③(-2)×(-2)×(-2);  ④(-3)×(-3)×(-3)×(-3).‎ ‎③1+0×(-1)-(-1)×(-1)-(-1)×0×(-1).‎ ‎2.乘法运算律 在做练习时我们看到如果像小学一样能利用乘法的交换律和结合 计算:‎ ‎(1)5×(-6);(4)(-6)×5;‎ ‎(2)[3×(-4)]×(-5);  (3)3×[(-4)×(-5)];‎ ‎(4)5×[3+(-7)];  (5)5×3+5×(-7).‎ 教师指出,由上面计算结果,可以说明有理数乘法也同样有交换律,结合律和分配律,并让学生分别用文字叙述和含字母的代数式表达三种运算律.‎ ‎(1)乘法交换律 文字叙述:两个数相乘,交换因数的位置,积不变.‎ 代数式表达:ab=ba.‎ ‎(2)乘法结合律 文字叙述:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积不变.‎ 代数式表达:(ab)c=a(bc).‎ ‎(3)乘法分配律 文字叙述:一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加.‎ 代数式表达:a(b+c)=ab+ac.‎ 提问:这里为什么只说“和”呢? 3×(5-7)能不能利用分配律?‎ 答:这里的“和”不再是小学中说的“和”的概念,而是指“代数和”, 3 ×(5-7)可以看成3乘以5与-7的和,当然可利用分配律.‎ 提问:如何表达三个以上有理数相乘或一个数乘以几个有理数的和时的运算律?‎ 答:乘法交换律:abc=cab=bca,或者说任意交换因数的位置,积不变;‎ 乘法结合律:a(bc)d=a(bcd)=……,或者说任意先乘其中几个因数,积不变;‎ 分配律:a(b+c+d+…+m)=ab+ac+ad+…+am,再把所得的积相加.‎ 继而教师作如下小结:‎ ‎(1)小学学习的乘法运算律都适用于有理数乘法.‎ ‎(2)我们研究数,总是由数的意义、数的认识(读、写、大小比较等)‎ 到数的运算和数的运算律这样一个顺序进行,小学学习的正数和0是这样,现在学习有理数也是这样,将来进一步学习范围更大的数还是这样.掌握了学习的方法,就掌握了自学的钥匙,希望予以注意.‎ 课堂练习 计算(能简便的尽量简便):‎ ‎(5)(-23)×(-48)×216×0×(-2);  (6)(-9)×(-48)+(-9)×48;‎ ‎(7) 24×(-17)+24×(-9).‎ ‎(三)、小结 教师指导学生看书,精读多个有理数乘法的法则及乘法运算律,并强调运算过程中应该注意的问题.‎ 七、练习设计 ‎1.计算:‎ ‎(7)(-7.33)×42.07+(-2.07)(-7.33);‎ ‎(8)(-53.02)(-69.3)+(-130.7)(-5.02);‎ 八、板书设计 ‎ §2.8有理数的乘法(2)‎ ‎(一)知识回顾 (三)例题解析 (五)课堂小结 ‎ 例4、例5‎ ‎(二)观察发现 (四)课堂练习 练习设计 九、教学后记 本节课教学的基本目的是让学生掌握有理数乘法的符号法则和运算律.为完成这一教学目标,可以采用直接传授的方法,即教师清楚明白地把乘法的符号法则和乘法的运算律告诉学生,然后通过做习题来加以巩固.这种教学方法具有直截了当的特点,但不利于开启学生思维,更不易使学生在接受知识的同时,提高观察、归纳和概括的能力.因此,我们采取了上述作法.‎ 为了充分发挥每个学生思维的积极性,上述设计强调学生与教师一起共同参与教学活动.只要我们坚持把数学活动过程体现在教学中,又尽力发挥学生的思维积极性,那么学生所学到的就不仅是一些数学知识,而且会学到分析问题和解决问题的一般方法.‎

资料: 10.8万

进入主页

人气:

10000+的老师在这里下载备课资料