第二章 平面向量复习课(二)
一、教学过程
(一)习题讲解:《习案》P173面6题。
(二)典型例题
例1.已知圆C:及点A(1,1),M是圆上任意一点,点N在线段MA的延长线上,且,求点N的轨迹方程。
练习:1. 已知O为坐标原点,=(2,1),=(1,7),=(5,1),=x,y=· (x,y∈R) 求点P(x,y)的轨迹方程;
2. 已知常数a>0,向量,经过定点A(0,-a)以为方向向量的直线与经过定点B(0,a)以为方向向量的直线相交于点P,其中.求点P的轨迹C的方程;
例2.设平面内的向量, , ,点P是直线OM上的一个动点,求当取最小值时,的坐标及ÐAPB的余弦值.
解 设.∵ 点P在直线OM上,
∴ 与共线,而,∴ x-2y=0即x=2y,
有.∵ ,,
∴
= 5y2-20y+12
= 5(y-2)2-8.
从而,当且仅当y=2,x=4时,取得最小值-8,
此时,,.
于是,,,
∴
小结:利用平面向量求点的轨迹及最值。
2
作业:〈习案〉作业二十八。
2