8.2 整式乘法(单项式乘以多项式)
教学目标:经历探索单项式与多项式相乘的运算法则的过程,会进行整式相乘的运算。
教学重点:单项式与多项式相乘的运算法则的探索.
教学难点:灵活运用法则进行计算和化简.
教学过程:
一. 复习旧知
1. 单项式乘单项式的运算法则
2. 练习:9x2y3·(-2xy2) (-3ab)3·(1/3abz)
3. 合并同类项的知识
二、问题引入,探究单项式与多项式相乘的法则
问题:三家连锁店以相同的价格m(单位:元/瓶)销售某种商品,它们在一个月内的销售量(单位:瓶)分别是a、b、c.你能用不同的方法计算它们在这个月内销售这种商品的总收入吗?
学生独立思考,然后讨论交流.经过思考可以发现一种方法是先求出三家连锁店的总销量,再求总收入,为:m(a+b+c).
另一种计算方法是先分别求出三家连锁店的收入,再求它们的和,即:ma+mb+mc.
由于上述两种计算结果表示的是同一个量,因此
m(a+b+c)=ma+mb+mc.
学生归纳:单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加.
引导学生体会:单项式与多项式相乘,就是利用乘法分配律转化为单项式与单项式相乘,
三.讲解例题
1. 例题: 计算:
(1)(-4x2)(3x+1); (2)
2 .补充例题1:
化简求值: (-3x)2 - 2x ( x+3 ) + x·x +2x ·(- 4x + 3)+ 2007
其中:x = 2008
练习:课本61页 1、2、3
3.补充练习:
计算
1.2ab(5ab2+3a2b); 2.(ab2-2ab)· ab;
3.-6x(x-3y); 4.-2a2(ab+b2).
5.(-2a2)·(1/2ab + b2)
6. (2/3 x2y - 6x y)·1/2xy2
2
7. (-3 x2)·(4x 2- 4/9x + 1)
8 3ab·( 6 a2b4 -3ab + 3/2ab3 )
9. 1/3xny ·(3/4x2-1/2xy-2/3y-1/2x2y)
10. ( - ab)2 ·( -3ab)2·(2/3a2b + a3·a2·a -1/3a )
四.小结归纳,布置作业:
作业:课本第65页 2、 4(1、2、3)
2