6.3 实数
课型:展示课
【学习目标】
1.知道无理数是客观存在的,了解无理数和实数的概念,能对实数按要求进行分类,同时会判断一个数是有理数还是无理数;
2.知道实数和数轴上的点一一对应;
3.经历用有理数估算的探索过程,从中感受“逼近”的数学思想,发展数感,激发学生的探索创新精神
【重点难点预测】
1、知道无理数的客观存在性、无理数和实数的概念;
2、会判断一个数是有理数还是无理数.
3、无理数探究中“逼近”思想的理解
一、学前准备
【自学新知】
用计算器计算,把下列有理数写成小数的形式,你能发现什么:
, , , , ,
结论:
我们把 叫做无理数。
和 统称为实数。
如:。G,…都是无理数,π=3.14159265…也是无理数。
2、下列各数哪些是有理数?哪些是无理数?
,3.1,02020020002…,,-π,,,,。
用根号表示的数一定是无理数吗?
二、探究活动
【探究无理数】
探索活动1 是个整数吗?为什么?
探索活动2 那么,是一个分数吗?面对这个问题,我们该如何解决呢?请同学们分组讨论。
探索活动3 到底多大呢?请同学们根据前面的结果,分组讨论,精确地估计的范围。
归纳结论:
这是一个无限不循环小数,我们称这样的数是 。我们把有理数和无理数统称为 。
备注
(教师复备栏及学生笔记)
3
【例题研讨】
例1.把下列各数填入相应的集合内,4,-,3.1415,,0.6,0,, , ,0.01001000100001……
(1)有理数集合:{ …}
(2)无理数集合:{ …}
(3)整数集合: { …}
(4)正实数集合:{ …}
2.数、、中,无理数有( ).
(A)0个 (B)1个 (C)2个 (D)3个
3.(1)把下列各数填入相应的集合内:-7,0.32,, ,,- .
有理数集合:{ …};
无理数集合:{ …};
(2)、、0、、、、3.14159、-0.020020002 0.12121121112…
(1)有理数集合{ }
(2)无理数集合{ }
(3)正实数集合{ }
(4)负实数集合{ }
三、自我测试
1、把下列各数填在相应的集合里:
, 3.1 ,02020020002…,,-π,,,,。
整数集合{ … }
分数集合{ … }
负分数集合{ … }
有理数集合{ … }
3
无理数集合{ … }
2、点M在数轴上与原点相距个单位,则点M表示的实数为
3、在5,0.1,-π,,,,,八个实数中,无理数的个数是 ( )
A.5 B.4 C.3 D.2
4、想一想与0哪个值更大?
四、应用与拓展
1、观察例题:∵,那么
∴的整数部分为2,小数部分为(-2)
如果的小数部分为a,的小数部分为b.
求:的值。
五、自主反思
知识盘点:
心得感悟
3