锐角三角函数第1课时学案(新人教版)
加入VIP免费下载

本文件来自资料包: 《锐角三角函数第1课时学案(新人教版)》 共有 1 个子文件,压缩包列表如下:

注:压缩包层级关系提取自源文件,您看到的所有资料结构都和您下载的源文件一致

温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天资源网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:403074932
资料简介
锐角三角函数 课题:28.1锐角三角函数(第一课时) 序号 学习目标:‎ ‎1、知识和技能: 了解锐角的正弦的概念,并能利用概念求一个角的正弦。‎ ‎2、过程和方法:经历当直角三角形的锐角固定时,它的对边与斜边的比值都固定(即正弦值不变)这一事实。 能根据正弦概念正确进行计算。‎ ‎3、情感、态度、价值观:认识数学的相互联系。‎ 学习重点:理解正弦(sinA)概念,知道当直角三角形的锐角固定时,它的对边与斜边的比值是固定值这一事实.‎ 学习难点:当直角三角形的锐角固定时,,它的对边与斜边的比值是固定值的事实。‎ 导学过程:‎ 一、课前导学:‎ 阅读教材P74-75页。‎ 二、课堂导学:‎ 情境导入:‎ ‎ 为什么在一个Rt△ABC中,∠C=90°,当∠A=30°时,∠A的对边与斜边的比都等于。‎ ‎2、出示任务,自主学习:‎ ‎ 经历当直角三角形的锐角固定时,它的对边与斜边的比值都固定(即正弦值不变)这一事实。 能根据正弦概念正确进行计算 ‎3、合作探究:‎ ‎ 在Rt△ABC中,∠C=90°,∠A=45°,∠A对边与斜边的比值是一个定值吗?如果是,是多少?‎ ‎ 结论:直角三角形中,45°角的对边与斜边的比值 ‎ 三、展示与反馈:‎ ‎ 1.《导学案》P80页“自主测评”‎ ‎ 2.《导学案》P81页“评价归纳 随堂练习 :‎ ‎1.三角形在正方形网格纸中的位置如图所示,则sinα的值是﹙ ﹚‎ ‎ A. B. C. D.‎ ‎2.如图,在直角△ABC中,∠C=90o,若AB=5,AC=4,则sinA=( )‎ A.  B. C.  D. ‎3. 在△ABC中,∠C=90°,BC=2,sinA=,则边AC的长是( )‎ A. B.3 C. D. ‎ ‎4.如图,已知点P的坐标是(a,b),则sinα等于( )‎ 2‎ A. B. C.‎ 四、学习小结: ‎ ‎1.锐角的正弦的概念 ‎ 2.能根据正弦概念正确进行计算 五、达标检测:‎ ‎《导学案》P81页“深化拓展”‎ 课后练习: 课本 第85页 习题28.1复习巩固第1题、第2题.(只做与正弦函数有关的部分)‎ 板书设计: 28.1锐角三角函数 ‎ 1、锐角三角函数。‎ ‎ 2、利用正弦概念正确进行计算。‎ 课后反思:‎ ‎ ‎ 2‎

资料: 10.8万

进入主页

人气:

10000+的老师在这里下载备课资料