第二十六章 反比例函数
本章内容属于“数与代数”领域,是在已经学习了平面直角坐标系和一次函数的基础上,再一次进入函数范畴,让学生进一步理解函数的内涵,并感受现实世界中存在各种函数,掌握如何应用函数知识解决实际问题.反比例函数是最基本的函数之一,是学习后续各类函数的基础.
本章的主要内容是反比例函数,教材中从几个学生熟悉的实际问题出发,引入反比例函数的概念,使学生逐步从对具体函数的感性认识上升到对抽象的反比例函数概念的理性认识.
第一节的内容是反比例函数的概念以及反比例函数的图象和性质.反比例函数y=(k为常数,k≠0)的图象分布在两个象限,当k>0时,图象分布在第一、三象限,y随x的增大(减小)而减小(增大);当k0,所以这个函数的图象在第一、三象限内,y随x的增大而减小.
(2)把点B,C和D的坐标代入y=,可知点B、点C的坐标满足函数关系式,点D的坐标不满足函数关系式,所以点B、点C在函数y=的图象上,点D不在该函数的图象上.
例2 如图是反比例函数y=的图象的一支.
根据图象回答下列问题:
(1)图象的另一支在哪个象限?常数m的取值范围是什么?
(2)在上图的图象上任取点A(a,b)和点B(a′,b′),如果a>a′,那么b和b′有怎样的大小关系?
师生活动:让学生先观察图象,然后结合反比例函数的图象完成此题.教师应给学生提供充分的交流时间和空间.
解:(1)反比例函数的图象的分布只有两种可能,分布在第一、三象限或者分布在第二、四象限,这个函数的图象的一支在第一象限,则另一支必在第三象限.
因此这个函数的图象分布在第一、三象限,所以m-5>0,解得m>5.
(2)由函数的图象可知,在双曲线的一支上,y随x的增大而减小,因为a>a′,所以b<b′.
三、巩固练习
1.若直线y=kx+b经过第一、二、四象限,则函数y=的图象在( )
A.第一、三象限 B.第二、四象限
C.第三、四象限 D.第一、二象限
答案 B
2.已知点(-1,y1),(2,y2),(π,y3)在双曲线y=-上,则下列关系式正确的是( )
A.y1>y2>y3 B.y1>y3>y2
C.y2>y1>y3 D.y3>y1>y2
答案 B
四、课堂小结
1.进一步掌握了反比例函数的作图方法.
2.学会了利用反比例函数的性质画出反比例函数的图象.
本节课通过学习情境的创设改变了学生的学习方法,学生的学习能力、思维品质、探究意识及其态度、情感价值观等有了不同的发展.在这节课的教学中,我比较成功地实施了诱思探究教学,学生的积极性得到充分的调动.在教学过程中,注意引导学生仔细观察反比例函数图象的特征,根据其对称性列表、描点、连线,作图就会画得又快又美观,注意控制时间,充分理解教学意图,敢于放手.