柱、锥、台、球的结构特征教案(新人教A版必修二)
加入VIP免费下载

本文件来自资料包: 《柱、锥、台、球的结构特征教案(新人教A版必修二)》 共有 1 个子文件,压缩包列表如下:

注:压缩包层级关系提取自源文件,您看到的所有资料结构都和您下载的源文件一致

温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天资源网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:403074932
资料简介
长丰县实验高中2016 ~2017学年第一学期高二年级数学学科 集 体 备 课 教 案 项目 内容 课题 ‎1.1.1‎‎ 柱、锥、台、球的结构特征 ‎(共 1 课时)‎ 修改与创新 教学 目标 ‎1.掌握柱、锥、台、球的结构特征,学会观察、分析图形,提高空间想象能力和几何直观能力.‎ ‎2.能够描述现实生活中简单物体的结构,学会建立几何模型研究空间图形,培养数学建模的思想.‎ 教学重、‎ 难点 教学重点:柱、锥、台、球的结构特征.‎ 教学难点:归纳柱、锥、台、球的结构特征.‎ 教学 准备 多媒体课件 教学过程 一、导入新课:‎ 在我们的生活中会经常发现一些具有特色的建筑物,你能举出一些例子吗?这些建筑的几何结构特征如何?引导学生回忆,举例和相互交流.教师对学生的活动及时给予评价.引出课题:柱、锥、台、球的结构特征.‎ 二、讲授新课:‎ 提出问题 ‎1.观察下面的图片,请将这些图片中的物体分成两类,并说明分类的标准是什么?‎ 图1‎ ‎2.你能给出多面体和旋转体的定义吗?‎ 活动:让学生分组讨论,根据初中已有的知识,学生很快就能分成两类,对没有思路的学生,教师予以提示.‎ ‎1.根据围成几何体的面是否都是平面来分类.‎ ‎2.根据围成几何体的面的特点来定义多面体,利用动态的观点来定义旋转体.‎ 讨论结果:‎ ‎1.通过观察,可以发现,(2)、(5)、(7)、(9)、(13)、(14)、(15)、(16)具有同样的特点:组成几何体的每个面都是平面图形,并且都是平面多边形,像这样的几何体称为多面体;(1)、(3)、(4)、(6)、(8)、(10)、(11)、(12)具有同样的特点:组成它们的面不全是平面图形,像这样的几何体称为旋转体.‎ ‎2.多面体:一般地,由若干个平面多边形围成的几何体叫做多面体.围成多面体的各个多边形叫做多面体的面;相邻两个面的公共边叫做多面体的棱;棱与棱的公共点叫做多面体的顶点.按围成多面体的面数分为:四面体、五面体、六面体、……,一个多面体最少有4个面,四面体是三棱锥.棱柱、棱锥、棱台均是多面体.‎ 旋转体:由一个平面图形绕它所在平面内的一条定直线旋转所形成的封闭几何体叫做旋转体,这条定直线叫做旋转体的轴.圆柱、圆锥、圆台、球均是旋转体.‎ 提出问题 ‎1.与其他多面体相比,图片中的多面体(5)、(7)、(9)具有什么样的共同特征?‎ ‎2.请给出棱柱的定义?‎ ‎3.与其他多面体相比,图片中的多面体(14)、(15)具有什么样的共同特征?‎ ‎4.请给出棱锥的定义.‎ ‎5.利用同样的方法给出棱台的定义.‎ 活动:学生先思考或讨论,如果学生没有思路时,教师再提示.‎ 对于1、3,可根据围成多面体的各个面的关系来分析.‎ 对于2,利用多面体(5)、(7)、(9)的共同特征来定义棱柱.‎ 对于4,利用多面体(14)、(15)的共同特征来定义棱锥.‎ 对于5,利用图片中的多面体(13)、(16)的共同特征来定义棱台.‎ 讨论结果:‎ ‎1.特点是:有两个面平行,其余的面都是平行四边形.像这样的几何体称为棱柱.‎ ‎2.定义:两个平面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面围成的多面体称为棱柱.棱柱中,两个互相平行的面叫做棱柱的底面;其余各面叫做棱柱的侧面;相邻侧面的公共边叫做棱柱的侧棱;侧面与底面的公共顶点叫做棱柱的顶点.‎ 表示法:用表示底面各顶点的字母表示棱柱.‎ 分类:按底面多边形的边数分为三棱柱、四棱柱、五棱柱……‎ ‎3.其中一个面是多边形,其余各面是三角形,这样的几何体称为棱锥.‎ ‎4.定义:有一面为多边形,其余各面都是有一个公共顶点的三角形,这些面围成的多面体叫做棱锥.这个多边形面叫做棱锥的底面或底;有公共顶点的各个三角形面叫做棱锥的侧面;各侧面的公共顶点叫做棱锥的顶点;相邻侧面的公共边叫做棱锥的侧棱.‎ 表示法:用顶点和底面各顶点的字母表示.‎ 分类:按底面多边形的边数分为三棱锥、四棱锥、五棱锥……‎ ‎5.定义:用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分叫做棱台.‎ 原棱锥的底面和截面叫做棱台的下底面和上底面;其他各面叫做棱台的侧面;相邻侧面的公共边叫做棱台的侧棱;底面多边形与侧面的公共顶点叫做棱台的顶点.‎ 表示法:用表示底面各顶点的字母表示棱台.‎ 分类:按底面多边形的边数分为三棱台、四棱台、五棱台……‎ 提出问题 ‎1.与其他旋转体相比,图片中的旋转体(1)、(8)具有什么样的共同特征?‎ ‎2.请给出圆柱的定义.‎ ‎3.其他旋转体相比,图片中的旋转体(3)、(6)具有什么样的共同特征?‎ ‎4.请给出圆锥的定义.‎ ‎5.类比圆锥和圆柱的定义方法,请给出圆台的定义.‎ ‎6.用同样的方法给出球的定义.‎ 讨论结果:‎ ‎1.静态的观点:有两个平行的平面,其他的面是曲面;动态的观点:矩形绕其一边旋转形成的面围成的旋转体.像这样的旋转体称为圆柱.‎ ‎2.定义:以矩形的一边所在的直线为旋转轴,其余各边旋转而形成的曲面所围成的旋转体叫做圆柱.旋转轴叫做圆柱的轴;垂直于旋转轴的边旋转而成的圆面叫做圆柱的底面;平行于轴的边旋转而成的曲面叫做圆柱的侧面,圆柱的侧面又称为圆柱面,无论转到什么位置,不垂直于轴的边都叫做圆柱侧面的母线.‎ 表示:圆柱用表示轴的字母表示.‎ 规定:圆柱和棱柱统称为柱体.‎ ‎3.静态的观点:有一平面,其他的面是曲面;动态的观点:直角三角形绕其一直角边旋转形成的面围成的旋转体.像这样的旋转体称为圆锥.‎ ‎4.定义:以直角三角形的一条直角边所在的直线为旋转轴,其余两边旋转而形成的面所围成的旋转体叫做圆锥.旋转轴叫做圆锥的轴;垂直于旋转轴的边旋转而成的圆面称为圆锥的底面;不垂直于旋转轴的边旋转而成的曲面叫做圆锥的侧面,圆锥的侧面又称为圆锥面,无论转到什么位置,这条边都叫做圆锥侧面的母线.‎ 表示:圆锥用表示轴的字母表示.‎ 规定:圆锥和棱锥统称为锥体.‎ ‎5.定义:以直角梯形垂直于底边的腰所在的直线为旋转轴,其余各边旋转而形成的曲面所围成的几何体叫做圆台.还可以看成是用平行于圆锥底面的平面截这个圆锥,截面与底面之间的部分.旋转轴叫做圆台的轴;垂直于旋转轴的边旋转而成的圆面称为圆台的底面;不垂直于旋转轴的边旋转而成的曲面叫做圆台的侧面,无论转到什么位置,这条边都叫做圆台侧面的母线.‎ 表示:圆台用表示轴的字母表示.‎ 规定:圆台和棱台统称为台体.‎ ‎6.定义:以半圆的直径所在的直线为旋转轴,将半圆旋转一周所形成的曲面称为球面,球面所围成的旋转体称为球体,简称球.半圆的圆心称为球心,连接球面上任意一点与球心的线段称为球的半径,连接球面上两点并且过球心的线段称为球的直径.‎ 表示:用表示球心的字母表示.‎ 知识总结:‎ ‎1.棱柱、棱锥、棱台的结构特征比较,如下表所示:‎ 结构特征 棱柱 棱锥 棱台 定义 两个平面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,这些面围成的几何体称为棱柱 有一面为多边形,其余各面是有一个公共顶点的三角形,这些面围成的几何体叫做棱锥 用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分,这样的多面体叫做棱台 底面 两底面是全等的多边形 多边形 两底面是相似的多边形 侧面 平行四边形 三角形 梯形 侧棱 平行且相等 相交于顶点 延长线交于一点 平行于底面的截面 与两底面是全等的多边形 与底面是相似的多边形 与两底面是相似的多边形 平行四边形 三角形 梯形 过不相邻两侧棱的截面 ‎2.圆柱、圆锥、圆台、球的结构特征比较,如下表所示:‎ 结构特征 圆柱 圆锥 圆台 球 定义 以矩形的一边所在的直线为旋转轴,其余各边旋转而形成的曲面所围成的几何体叫做圆柱 以直角三角形的一条直角边为旋转轴,其余各边旋转而形成的曲面所围成的几何体叫做圆锥 以直角梯形垂直于底边的腰所在的直线为旋转轴,其余各边旋转而形成的曲面所围成的几何体叫做圆台 以半圆的直径所在的直线为旋转轴,将半圆旋转一周所形成的曲面称为球面,球面所围成的几何体称为球体,简称球 底面 两底面是平行且半径相等的圆 圆 两底面是平行但半径不相等的圆 无 侧面展开图 矩形 扇形 扇环 不可展开 母线 平行且相等 相交于顶点 延长线交于一点 无 平行于底面的截面 与两底面是平行且半径相等的圆 平行于底面且半径不相等的圆 与两底面是平行且半径不相等的圆 球的任何截面都是圆 轴截面 矩形 等腰三角形 等腰梯形 圆 ‎3.简单几何体的分类:‎ 应用示例 例1 下列几何体是棱柱的有( )‎ 图2‎ A.5个 B.4个 C.3个 D.2个 活动:判断一个几何体是哪种几何体,一定要紧扣柱、锥、台、球的结构特征,注意定义中的特殊字眼,切不可马虎大意.‎ 棱柱的结构特征有三方面:有两个面互相平行;其余各面是平行四边形;这些平行四边形面中,每相邻两个面的公共边都互相平行.当一个几何体同时满足这三方面的结构特征时,这个几何体才是棱柱.很明显,几何体②④⑤⑥均不符合,仅有①③符合.‎ 答案:D 点评:本题主要考查棱柱的结构特征.本题容易错认为几何体②也是棱柱,其原因是忽视了棱柱必须有两个面平行这个结构特征,避免出现此类错误的方法是将教材中的各种几何体的结构特征放在一起对比,并且和图形对应起来记忆,要做到看到文字叙述就想到图,看到图形就想到文字叙述.‎ 变式训练 ‎1.下列几个命题中,‎ ‎①两个面平行且相似,其余各面都是梯形的多面体是棱台;‎ ‎②有两个面互相平行,其余四个面都是等腰梯形的六面体是棱台;‎ ‎③各侧面都是正方形的四棱柱一定是正方体;‎ ‎④分别以矩形两条不等的边所在直线为旋转轴,将矩形旋转,所得到的两个圆柱是两个不同的圆柱.‎ 其中正确的有__________个.( )‎ A.1 B‎.2 C.3 D.4‎ 分析:①中两个底面平行且相似,其余各面都是梯形,并不能保证侧棱会交于一点,所以①是错误的;②中两个底面互相平行,其余四个面都是等腰梯形,也有可能两底面根本就不相似,所以②不正确;③中底面不一定是正方形,所以③不正确;很明显④是正确的.‎ 答案:A ‎2.下列命题中正确的是( )‎ A.有两个面平行,其余各面都是四边形的几何体叫棱柱 B.有两个面平行,其余各面都是平行四边形的几何体叫棱柱 C.有一个面是多边形,其余各面都是三角形的几何体叫棱锥 D.棱台各侧棱的延长线交于一点 答案:D ‎3.下列命题中正确的是( )‎ A.以直角三角形的一直角边为轴旋转所得的旋转体是圆锥 B.以直角梯形的一腰为轴旋转所得的旋转体是圆台 C.圆柱、圆锥、圆台都有两个底面 D.圆锥的侧面展开图为扇形,这个扇形所在圆的半径等于圆锥底面圆的半径 分析:以直角梯形垂直于底的腰为轴,旋转所得的旋转体才是圆台,所以B不正确;圆锥仅有一个底面,所以C不正确;圆锥的侧面展开图为扇形,这个扇形所在圆的半径等于圆锥的母线长,所以D不正确.很明显A正确.‎ 答案:A 练习:课本P.7 练习1、2(1)(2)‎ 课堂小结:‎ 由学生整理学习了哪些内容 布置作业:‎ 习题‎1.1 A组 第1、2、3题 板书设计 教学反思

资料: 10.8万

进入主页

人气:

10000+的老师在这里下载备课资料