2.3.3 直线与平面垂直的性质
教学目标
1.知识与技能:
(1)理解并掌握直线与平面垂直的定义和性质定理;能对定义与性质定理进行简单应用 ;
(2)通过对定义和性质定理的探究和运用,初步培养学生的几何直观能力和抽象概括能力;
(3)通过对探究过程的引导,努力提高学生学习数学的热情,培养学生主动探究的习惯.
2.过程与方法:经历位置关系判断的推导过程,体验由特殊到一般、数形结合的数学思想方法。使学生初步学会把一些实际问题转化为直线和平面的问题,关键是要使该问题是否满足直线和平面垂直的性质定理,培养学生分析问题、解决问题的能力
3.情感态度价值观:
(1)空间教学的核心问题是让学生了解平面的特征,加强与实际生活的联系,以科学的态度评价身边的一些现象;
(2)用有现实意义的实例,激发学生的学习兴趣,培养学生勇于探索,善于发现的创新思想。培养学生掌握“理论来源于实践,并把理论应用于实践”的辨证思想
重点难点
1.教学重点:操作确认并概括出直线与平面的定义和性质定理的过程及初步应用;
2.教学难点:操作确认并概括出直线与平面的定义和性质定理的过程.
教学过程:
复习
直线与平面垂直的定义:一条直线和平面内的任何一条直线都垂直,我们说这条直线和这个平面互相垂直,直线叫做平面的垂线,平面叫做直线的垂面.直线和平面垂直的画法及表示如下:
图1
如图1,表示方法为:a⊥α.
由直线与平面垂直的定义不难得出:b⊥a.
导入新课
- 6 -
如图2,长方体ABCD—A′B′C′D′中,棱AA′、BB′、CC′、DD′所在直线都垂直所在的平面ABCD,它们之间具有什么位置关系?
图2
提出问题
①回忆空间两直线平行的定义.
②判断同垂直于一条直线的两条直线的位置关系?
③找出恰当空间模型探究同垂直于一个平面的两条直线的位置关系.
④用三种语言描述直线与平面垂直的性质定理.
⑤如何理解直线与平面垂直的性质定理的地位与作用?
讨论结果:①如果两条直线没有公共点,我们说这两条直线平行.它的定义是以否定形式给出的,其证明方法多用反证法.
②如图3,同垂直于一条直线的两条直线的位置关系可能是:相交、平行、异面.
图3
③如图4,长方体ABCD—A′B′C′D′中,棱AA′、BB′、CC′、DD′所在直线都垂直于所在的平面ABCD,它们之间具有什么位置关系?
图4 图5
棱AA′、BB′、CC′、DD′所在直线都垂直所在的平面ABCD,它们之间互相平行.
④直线和平面垂直的性质定理用文字语言表示为:
垂直于同一个平面的两条直线平行,也可简记为线面垂直、线线平行.
直线和平面垂直的性质定理用符号语言表示为:b∥a.
直线和平面垂直的性质定理用图形语言表示为:如图5.
- 6 -
⑤直线与平面垂直的性质定理不仅揭示了线面之间的关系,而且揭示了平行与垂直之间的内在联系.
应用示例
例1 证明垂直于同一个平面的两条直线平行.
解:已知a⊥α,b⊥α.
求证:a∥b.
图6
证明:(反证法)如图6,假定a与b不平行,且b∩α=O,作直线b′,使O∈b′,a∥b′.
直线b′与直线b确定平面β,设α∩β=c,则O∈c.
∵a⊥α,b⊥α,∴a⊥c,b⊥c.
∵b′∥a,∴b′⊥c.又∵O∈b,O∈b′,bβ,b′β,
a∥b′显然不可能,因此b∥a.
例2 如图7,已知α∩β=l,EA⊥α于点A,EB⊥β于点B,aα,a⊥AB.
求证:a∥l.
图7
证明:l⊥平面EAB.
又∵aα,EA⊥α,∴a⊥EA.
又∵a⊥AB,∴a⊥平面EAB.
∴a∥l.
例2 如图8,已知直线a⊥b,b⊥α,aα.
求证:a∥α.
- 6 -
图8
证明:在直线a上取一点A,过A作b′∥b,则b′必与α相交,设交点为B,过相交直线a、b′作平面β,设α∩β=a′,
∵b′∥b,a⊥b,∴a⊥b′.∵b⊥α,b′∥b,
∴b′⊥α.
又∵a′α,∴b′⊥a′.
由a,b′,a′都在平面β内,且b′⊥a,b′⊥a′知a∥a′.∴a∥α.
例3 如图9,已知PA⊥矩形ABCD所在平面,M、N分别是AB、PC的中点.
(1)求证:MN⊥CD;
(2)若∠PDA=45°,求证:MN⊥面PCD.
图9
证明:(1)取PD中点E,又N为PC中点,连接NE,则NE∥CD,NE=CD.
又∵AM∥CD,AM=CD,
∴AMNE.
∴四边形AMNE为平行四边形.
∴MN∥AE.
∵CD⊥AE.
(2)当∠PDA=45°时,Rt△PAD为等腰直角三角形,
则AE⊥PD.又MN∥AE,
∴MN⊥PD,PD∩CD=D.
∴MN⊥平面PCD.
- 6 -
变式训练
已知a、b、c是平面α内相交于一点O的三条直线,而直线l和平面α相交,并且和a、b、c三条直线成等角.求证:l⊥α.
证明:分别在a、b、c上取点A、B、C并使AO=BO=CO.设l经过O,在l上取一点P,在△POA、△POB、△POC中,
∵PO=PO=PO,AO=BO=CO,∠POA=∠POB=∠POC,
∴△POA≌△POB≌△POC.
∴PA=PB=PC.取AB的中点D,
连接OD、PD,则OD⊥AB,PD⊥AB.
∵PD∩OD=D,∴AB⊥平面POD.
∵PO平面POD,∴PO⊥AB.
同理,可证PO⊥BC.
∵ABα,BCα,AB∩BC=B,∴PO⊥α,即l⊥α.
若l不经过点O时,可经过点O作l′∥l.用上述方法证明l′⊥α,
∴l⊥α.
课堂练习:
1.若表示直线,表示平面,下列条件中,能使的是 ( )
2.已知与是两条不同的直线,若直线平面,①若直线,则;②若,则;③若,则;④,则。上述判断正确的是 ( )
①②③ ②③④ ①③④ ②④
3.在直四棱柱中,当底面四边形满足条件 时,有(注:填上你认为正确的一种条件即可,不必考虑所有可能的情况)
4、如图,直三棱柱中,,侧棱,侧面的两条对角线交于点,的中点为,
- 6 -
求证:平面
课堂小结
知识总结:利用线面垂直的性质定理将线面垂直问题转化为线线平行,然后解决证明垂直问题、平行问题、求角问题、求距离问题等.
思想方法总结:转化思想,即把面面关系转化为线面关系,把空间问题转化为平面问题.
作业
课本习题2.3 B 组1、2.
- 6 -