1.3.1二项式定理
【教学目标】
(1)理解用组合的知识推导二项式定理;
(2)理解通项的意义并会灵活应用通项,能区分项的系数与二项式系数的不同;
(3)会用二项式定理解决与二项展开式有关的简单问题.
(4)充分体验归纳推理不仅可以猜想到一般性的结果,而且可以启发我们发现一般性问题的解决方法。
【教学重点】
二项式定理及通项公式的掌握及运用
【教学难点】
二项式定理及通项公式的掌握及运用
第一课时
一、复习引入:
⑴;
⑵
⑶的各项都是次式,
即展开式应有下面形式的各项:,,,,,
展开式各项的系数:上面个括号中,每个都不取的情况有种,即种,的系数是;恰有个取的情况有种,的系数是,恰有个取的情况有种,的系数是,恰有个取的情况有种,的系数是,有都取的情况有种,的系数是,
∴.
二、讲解新课:
二项式定理:
⑴的展开式的各项都是次式,即展开式应有下面形式的各项:
- 6 -
,,…,,…,,
⑵展开式各项的系数:
每个都不取的情况有种,即种,的系数是;
恰有个取的情况有种,的系数是,……,
恰有个取的情况有种,的系数是,……,
有都取的情况有种,的系数是,
∴,
这个公式所表示的定理叫二项式定理,右边的多项式叫的二项展开式,⑶它有项,各项的系数叫二项式系数,
⑷叫二项展开式的通项,用表示,即通项.
⑸二项式定理中,设,则
三、讲解范例:
例1.展开.
解一: .
解二:
.
例2.展开.
解:
.
- 6 -
第二课时
例3.求的展开式中的倒数第项
解:的展开式中共项,它的倒数第项是第项,
.
例4.求(1),(2)的展开式中的第项.
解:(1),
(2).
点评:,的展开后结果相同,但展开式中的第项不相同
例5.(1)求的展开式常数项;
(2)求的展开式的中间两项
解:∵,
∴(1)当时展开式是常数项,即常数项为;
(2)的展开式共项,它的中间两项分别是第项、第项,
,
第三课时
例6.(1)求的展开式的第4项的系数;
(2)求的展开式中的系数及二项式系数
解:的展开式的第四项是,
∴的展开式的第四项的系数是.
- 6 -
(2)∵的展开式的通项是,
∴,,
∴的系数,的二项式系数.
例7.求的展开式中的系数
分析:要把上式展开,必须先把三项中的某两项结合起来,看成一项,才可以用二项式定理展开,然后再用一次二项式定理,,也可以先把三项式分解成两个二项式的积,再用二项式定理展开
解:(法一)
,
显然,上式中只有第四项中含的项,
∴展开式中含的项的系数是
(法二):
∴展开式中含的项的系数是.
例8.已知 的展开式中含项的系数为,求展开式中含项的系数最小值
分析:展开式中含项的系数是关于的关系式,由展开式中含项的系数为,可得,从而转化为关于或的二次函数求解
解:展开式中含的项为
∴,即,
展开式中含的项的系数为
,
∵, ∴,
- 6 -
∴
,∴当时,取最小值,但,
∴ 时,即项的系数最小,最小值为,此时.
第四课时
课堂练习:
1.求的展开式的第3项.
2.求的展开式的第3项.
3.写出的展开式的第r+1项.
4.求的展开式的第4项的二项式系数,并求第4项的系数.
5.用二项式定理展开:
(1);(2).
6.化简:(1);(2)
7.展开式中的第项为,求.
8.求展开式的中间项
答案:1.
2.
3.
4.展开式的第4项的二项式系数,第4项的系数
5.(1);
- 6 -
(2).
6. (1);
(2)
7. 展开式中的第项为
8. 展开式的中间项为
- 6 -