北师大版七年级数学下册第三章知识点小结
第三章 变量之间的关系
一、变量、自变量、因变量
1、在某一变化过程中,不断变化的量叫做变量。
2、如果一个变量 y 随另一个变量 x 的变化而变化,则把 x 叫做自变量,y 叫做因变量。
3、自变量与因变量的确定:
(1)自变量是先发生变化的量;因变量是后发生变化的量。
(2)自变量是主动发生变化的量,因变量是随着自变量的变化而发生变化的量。
(3)利用具体情境来体会两者的依存关系。
二、表格
1、表格是表达、反映数据的一种重要形式,从中获取信息、研究不同量之间的关系。
(1)首先要明确表格中所列的是哪两个量;
(2)分清哪一个量为自变量,哪一个量为因变量;
(3)结合实际情境理解它们之间的关系。2、绘制表格表示两个变量之间关系
(1)列表时首先要确定各行、各列的栏目;
(2)一般有两行,第一行表示自变量,第二行表示因变量;
(3)写出栏目名称,有时还根据问题内容写上单位;
(4)在第一行列出自变量的各个变化取值;第二行对应列出因变量的各个变化取值。
(5)一般情况下,自变量的取值从左到右应按由小到大的顺序排列,这样便于反映因变量
与自变量之间的关系。
三、关系式
1、用关系式表示因变量与自变量之间的关系时,通常是用含有自变量(用字母表示)的代
数式表示因变量(也用字母表示),这样的数学式子(等式)叫做关系式。
2、关系式的写法不同于方程,必须将因变量单独写在等号的左边。
3、求两个变量之间关系式的途径:
(1)将自变量和因变量看作两个未知数,根据题意列出关于未知数的方程,并最终写成关
系式的形式。
(2)根据表格中所列的数据写出变量之间的关系式;
(3)根据实际问题中的基本数量关系写出变量之间的关系式;(4)根据图象写出与之对应的变量之间的关系式。
4、关系式的应用:
(1)利用关系式能根据任何一个自变量的值求出相应的因变量的值;
(2)同样也可以根据任何一个因变量的值求出相应的自变量的值;
(3)根据关系式求值的实质就是解一元一次方程(求自变量的值)或求代数式的值(求因
变量的值)。
四、图象
1、图象是刻画变量之间关系的又一重要方法,其特点是非常直观、形象。
2、图象能清楚地反映出因变量随自变量变化而变化的情况。
3、用图象表示变量之间的关系时,通常用水平方向的数轴(又称横轴)上的点表示自变量,
用竖直方向的数轴(又称纵轴)上的点表示因变量。
4、图象上的点:
(1)对于某个具体图象上的点,过该点作横轴的垂线,垂足的数据即为该点自变量的取值;
(2)过该点作纵轴的垂线,垂足的数据即为该点相应因变量的值。
(3)由自变量的值求对应的因变量的值时,可在横轴上找到表示自变量的值的点,过这个
点作横轴的垂线与图象交于某点,再过交点作纵轴的垂线,纵轴上垂足所表示的数据即为因变量的相应值。
(4)把以上作垂线的过程过来可由因变量的值求得相应的自变量的值。
5、图象理解
(1)理解图象上某一个点的意义,一要看横轴、纵轴分别表示哪个变量;
(2)看该点所对应的横轴、纵轴的位置(数据);
(3)从图象上还可以得到随着自变量的变化,因变量的变化趋势。
五、速度图象
1、弄清哪一条轴(通常是纵轴)表示速度,哪一条轴(通常是横轴)表示时间;
2、准确读懂不同走向的线所表示的意义:
(1)上升的线:从左向右呈上升状的线,其代表速度增加;
(2)水平的线:与水平轴(横轴)平行的线,其代表匀速行驶或静止;
(3)下降的线:从左向右呈下降状的线,其代表速度减小。
六、路程图象
1、弄清哪一条轴(通常是纵轴)表示路程,哪一条轴(通常是横轴)表示时间;2、准确读懂不同走向的线所表示的意义:
(1)上升的线:从左向右呈上升状的线,其代表匀速远离起点(或已知定点);
(2)水平的线:与水平轴(横轴)平行的线,其代表静止;
(3)下降的线:从左向右呈下降状的线,其代表反向运动返回起点(或已知定点)。
七、三种变量之间关系的表达方法与特点:
表达方法
特 点
表格法
多个变量可以同时出现在同一张表格中
关系式法
准确地反映了因变量与自变量的数值关系
图像法
直观、形象地给出了因变量随自变量的变化趋势