1
第二章 相交线与平行线
1 两条直线的位置关系(第 1 课时)
课时安排说明:
《两条直线的位置关系》共分两课时,第一课时,主要内容是探索两条直线
的位置关系,了解对顶角、余角、补角的定义及其性质;第二课时,主要内容是
垂直的定义、表示方法、性质及其简单应用.
一、 学生起点分析
学生的知识技能基础:学生在小学已经认识了平行线、相交线、角;在七年
级上册中,已经对角及其分类有了一定的认识。这些知识储备为本节课的学习奠
定了良好的基础,使学生具备了掌握本节知识的基本技能。
学生活动经验基础:在前面知识的学习过程中,教师为学生提供了广阔的可
供探讨和交流的空间,学生已经经历了一些动手操作,探索发现的数学活动,积
累了初步的数学活动经验,具备了一定的图形认识能力和借助图形分析问题解决
问题的能力;能够将直观与简单推理相结合;在合作探究的过程中,学生在以前
的数学学习中学生已经经历了小组合作的学习过程,积累了大量的方法和经验,
具备了一定的合作与交流能力。
二、 教学任务分析
针对七年级学生的学情,本节从学生熟悉的、感兴趣的情境出发,引导学生
自主提炼归纳出同一平面内两直线的位置关系,了解补角、余角、对顶角的概念
及其性质并能够进行简单的应用;通过“让学生经历观察、操作、推理、想象等
探索过程” ,发展学生的空间观念及推理能力;能从实际情境中抽象出数学模
型,为后续学习“空间与图形”这一数学领域而打下坚实的基础;激发学生从数
学的角度认识现实,能够敏锐的发现问题、提出问题,并运用所掌握的数学知识
初步解决问题;引导学生在思考、交流、表达的基础上逐步达成有关情感与态度
目标. 本节内容在教材中处于非常重要的地位,起着承前启后的作用。因此,本
节课的目标是:
1.知识与技能:在具体情境中了解相交线、平行线、补角、余角、对顶角
的定义,知道同角或等角的余角相等、同角或等角的补角相等、对顶角相等,并2
能解决一些实际问题。
2.过程与方法:经历操作、观察、猜想、交流、推理等获取信息的过程,
进一步发展空间观念、推理能力和有条理表达的能力。
3.情感与态度:激发学生学习数学的兴趣,认识到现实生活中蕴含着大量
的数量和图形的有关问题,这些问题可以抽象成数学问题,用数学方法予以解决。
三、教学过程设计
本课时我遵循“开放”的原则,重组教材,恰当地创设情境,以问题串的方式
激发学生的好奇心和求知欲,通过独立思考,不断提出问题分析问题,并创造性
地解决问题;通过动手操作、合作交流等方式,为学生构建了有效开放的学习环
境。本节课共设计以下环节:第一环节:走进生活,引入课题;第二环节:动手
实践、探究新知;第三环节:学以致用,步步为营;第四环节: 拓展延伸,综
合应用;第五环节:学有所思,反馈巩固; 第六环节:布置作业,能力延伸。
第一环节 走进生活 引入课题
活动内容一:两条直线的位置关系
1.请同学们自学第一节,提前两天搜集有关“两条直线的位置关系”的图片,
提炼出数学图形,进行归类,然后小组合作交流。
2.教师提前一天进行筛选,捕捉出有代表性的答案,课堂上由学生本人主讲,
最后概括出有关结论。
3.巩固练习:教师展示下列图片,学生快速回答:
2.1—1 2.1—2
结论:1.一般地,在同一平面内,两条直线的位置关系有两种: 和 .
2.定义分别为: 。
问题 1:在 2.1—1 中,直线 m 和 n 的关系是 ;a 和 b 是 ;
a 和 n 是 。
问题 2:在 2,1—2 和 2.1—3 中你能提出哪些问题?
m
n
ab
2.1—33
活动目的:独立思考、学会思考是创新的核心。数学来源于生活,通过课前开放,
引导学生从身边熟悉的图形出发,体会数学与生活的联系,总结出同一平面内两
条直线的基本位置关系,体会本章内容的重要性和在生活中的广泛应用,为引入
新课做好准备。通过亲身经历提炼有关数学信息的过程,可以让学生在直观有趣
的问题情境中学到有价值的数学。充分利用现代化教学手段加强直观教学,引起
学生学习的兴趣:通过师生互动,生生互动,增加学生之间的凝聚力,在相互探
讨中激发学生学习积极性,提高学课堂效率。
活动注意事项:在实际教学中可让学生自由搜寻,课堂上让学生充分发表自己的
见解,清晰的表达自己的想法。学生搜集的信息是丰富多彩的,教师应注意捕捉
有效信息,从激励学生的角度出发,给予学生一个充分展示自我的舞台,在活动
中提高学生与他人合作交流的能力,激发学生的学习兴趣。针对图 2.1—1 中,
如果有学生提出 a 和 m 有何位置关系,教师可以激励学生课后继续探究,将课
内学习延伸到课外,开阔学生的视野。如果学生的作品中已经包含了“巩固练习”
的内容,教师应恰当取舍。
第二环节 动手实践 探究新知
动手实践一
.
问题 1:观察 2.1—4:∠1 和∠2 的位置有什么关系?大小有何关系?为什么?
小组合作交流,尝试用自己的语言描述对顶角的定义。
问题 2:剪子可以看成图 2.1—4,那么剪子在剪东西的过程中,∠1 和∠2 还保持
相等吗?∠3 和∠4 呢?你有何结论?
问题 3:下列各图中,∠1 和∠2 是对顶角的是( )
2.1—5
1
2
34
2.1—4 2.1—6
请先画一画:两条直线直线 AB 和
CD,交于点 O,再回答下列问题.4
问题 4:如图 2.1—6 所示,有一个破损的扇形零件,利用图中的量角器可以量
出这个扇形零件的圆心角的度数吗?你能说出所量角是多少度吗?为什么?
活动目的:概括归纳得到猜想和规律,并加以验证,是创新的重要方法。结合具
体的学习内容,设计有效的数学探究活动,使学生经历数学的发生发展过程,积
累数学活动经验。设置问题 1 和问题 2 的目的是通过创设生动有趣的活动情景,
为学生提供了观察、操作、推理、交流等丰富的活动素材,使学生在自主学习的
过程中,学会对顶角的概念及其性质。同时进一步培养学生抽象几何图形进行建
模的能力。而问题 3 和问题 4 是利用学习过的有关事实解决实际问题,一会数学
在生活中的应用,进一步巩固了对顶角的概念及其性质,方法的不唯一激发了学
生的兴趣。
活动注意事项:创新意识的培养应贯穿教育的始终,因此教师应将活动过程充分
放手给学生,同时培养学生抽象几何图形的能力,简单合情说理的能力,观察分
析的能力,总结归纳的能力等。让学生在活动中积累经验,增加浓郁的学习氛围。
动手实践二
补角定义:一般地,如果两个角的和是 180 0 ,那么称这两个角互为补角
(supplementary angle)
余角定义:
如果两个角的和是 900,那么称这两个角互为余角(complementary angle)
活动目的:通过动手画图,可以加深学生对概念的理解,在相互交流中,初步形
成评价与反思的意识,在相互补充、相互学习中,体验“互补互余”仅仅表明了
两个角的度量关系,并没有限制角的位置关系;在合作共赢中,获得成功的乐趣,
1
2 1 2 1
2
1
2
A B C D
注意:互余与互补是指两
个角之间的数量关系,与
它们的位置无关。
1.请画出两个角,使他们的和为直角。
2.请画出两个角,使它们的和为平角。
3.小组交流画法,相互点评。
4.用自己的语言描述补角余角的定义。5
锻炼克服困难的意志,建立自信心,可以更好地掌握新知识。
活动注意事项:教师首先应关注全体学生是否积极思考?是否进行有效讨论?在
巡视中,还应关注学生的画图是否合乎要求,要及时收集学生一些好的画法进行
展示,关注学习上稍微落后的学生,提前给予点拨,在集体展示时给这部分同学
展示的机会,可以极大的调动这部分同学的学习热情!
巩固反馈:
问题 1:小组合作,每人编一道有关余角或者补角的题目,其余同学抢答,组长
记录、整理各种题型,练习 2 分钟。教师巡视,给予评价,捕捉好资源。
问题 2:教师将捕捉到的好资源用投影仪集体展示,全班抢答,及时给予评价。
问题 3:下列说法中,正确的有 。(填序号)
① 已知∠A=40º,则∠A 的余角=500②若∠1+∠2=90º,则∠1 和∠2 互为余角。
③若∠1+∠2+∠3=180º,则∠1、∠2 和∠3 互为补角。④若∠A=40º26′,则∠A
的补角=139º34′⑤一个角的补角必为钝角。⑥一个锐角的补角比这个角的余角大 900
活动目的:据学生活泼好动、争强好胜的心理,设置问题 1 和问题 2 可以更好地
激发学生的参与意识,在竞争中加深对概念的理解,提升所编题的质量,促进合
作交流的意识。问题 3 是针对学生易错题而改编的一组判断题,这种形式能引导
学生逐步加深对余角、补角的概念及其性质的理解和掌握。
活动注意事项:学生在编题的过程中,教师一定要仔细聆听每组的发言,对每组
的表现予以点拨和激励,注意收集出色的资源及学生出错的信息,教师还应关注
学生已经掌握了什么?具备了什么能力?还存在哪些不足? 展示时给予合理的
评价和强调。
动手实践三
打台球时,选择适当的方向,用白球击打红球,反弹后的红球会直接入袋,此时∠
1= ∠ 2 , 将 图 2.1—7 抽 象 成 图 2.1—8 , ON 与 DC 交 于 点 O , ∠ DON= ∠
CON=900,∠1=∠26
小组合作交流,解决下列问题:在图 2.1—8 中
问题 1:哪些角互为补角?哪些角互为余角?
问题 2:∠3 与∠4 有什么关系?为什么?
问题 3:∠AOC 与∠BOD 有什么关系?为什么?
你还能得到哪些结论?
活动目的:概括归纳得到猜想和规律,并加以验证,是创新的重要方法。通过生
动有趣的活动情景,为学生提供了观察、操作、推理、交流等丰富的数学活动,
使学生在自主学习的过程中,掌握“同角或者等角的补角相等。”“同角或者等角
的余角相等。”并能够用自己的语言说出简单推理。同时发散学生思维,让学生
尽可能用多种方法来说明自己猜测的正确性,培养学生合情说理的能力。并在这
个过程中,培养学生抽象几何图形进行建模的能力。本着面向全体的原则,从学
生生活经验和熟悉的背景知识出发,通过创设情境串---问题串,极大的调动全
体学生的参与意识,充分挖掘他们的潜能,给学生一个充分展示的舞台,以达到
人人都能学好数学的目标!
活动注意事项: 学生应有足够的时间和空间经历观察、猜测、推理、验证等活
动过程。本环节的三个问题是环环紧扣、层层递进提出来的,前一个问题为下一
个问题作好铺垫。在学习的过程中,时刻不能忘记学生是主体,一切教学活动都
应当从学生已有的认知角度出发,问题环节设计跨越性不能太强,让学生在不断
的探索过程中得到不同程度的感悟,自己能够主动地去探究问题的实质,体验成
功的喜悦;教师要充分发散学生的思维,鼓励学生各抒己见,敢于质疑;上课要
渗透合情说理的方法,进一步培养学生的推理能力。
第三环节 学以致用,步步为营
2.1—7
2
D CO
1
3 4
A N B
2.1—8
同角或者等角的余角相等。
同角或者等角的补角相等。
A B
C
2.1—9
A B
C
2.1—10D7
问题 1:①.因为∠1+∠2=90º,∠2+∠3=90º,所以∠1= ,理由是 .
② 因为∠1+∠2=180º,∠2+∠3=180º,所以∠1= ,理由是 .
问题 2:
①用你手中的三角板,画一个直角三角形,如图 2.1—9.则∠A 是∠B 的 。
变式训练:
② 在①的基础上,做∠CDA=900。如图 2.1—10.
1. 则∠A 的余角有哪几个?为什么?
2. 请找出互补的角,并说明理由。
3. 你还能提出哪些问题?试试看吧!
活动目的:通过一题多变,可以引导学生透过现象看本质、通过本质找规律、通
过规律找方法。重视动手操作,是发展学生思维,培养学生数学能力最有效途径
之一。通过亲自画图,可以直观的发现有关结论,它有利于让学生参与知识的形
成过程,促进对抽象数学的理解,为问题的顺利解决而奠定基础。变式训练题的
设置更能激发学生的兴趣,在超级变变变中体验数学的美,学会从不同的角度看
待问题。
活动注意事项: 学生可能会认为概念和性质不难理解,但认识中却存在不清晰
的地方。此处应给学生充分的讨论与思考的时间,可以分组讨论合作,也可以现
场辩论,充分发挥学生的作用,让他们之间思维互相碰撞,在争论中发现问题要
比盲目的接受知识更有意义,特别是学生之间通过合作学来的知识更能在脑海中
留下深刻的印象。
第四环节 拓展延伸,综合应用
O BA
C
D
E
2.1—11 2.1—12O
D
E
C
B
A8
问题 1:如图 2.1—11 已知:直线 AB 与 CD 交于点 O, ∠EOD=900,回答下列问题:
1. ∠AOE 的余角是 ;补角是 。
2. ∠AOC 的余角是 ;补角是 ;对顶角是 。
问题 2:如图 2.1—12,点 O 在直线 AB 上,∠DOC 和∠BOE 都等于 900.
请找出图中互余的角、互补的角、相等的角,并说明理由。先独立探究,再小组
交流。
活动目的:通过问题串的巧妙设置,不仅高效率的复习了本节的知识点,而且让
学生在开放的环境中畅所欲言,收获了一份自信!问题串的设置提高了学生的探
索意识和创新意识的形成,激发了学生的学习兴趣和探究欲。
活动的注意事项:鼓励学生畅谈自己学习的知识和体会,激发学生对数学的学习
兴趣与信心,对出现的错误,一定进行积极的辨析,让学生学会解决的方法。
第五环节 学有所思 反馈巩固
归纳总结:
1. 你学到了哪些知识点?
2. 你学到了哪些方法?
3. 你还有哪些困惑?
活动目的:本环节的设置使学生学会从系统的角度把握知识方法,努力使知识结
构化、网络化,引导学生时刻注意新旧知识之间的联系;鼓励学生畅谈自己学习
的知识和体会,激发学生对数学的学习兴趣与信心,培养学生独自梳理知识,归
纳学习方法及解题方法的能力。锻炼学生组织语言及表达能力,经历与同伴分享
成果的快乐过程。
活动注意事项:教师一定让学生畅谈自己的切身感受,对于知识点的整合,更要
有所思考,达到对所学知识巩固的目的。鼓励其他学生进行补充纠正,教师也应
进行适时的点拨和强调。
巩固反馈
1. 如图 2.1-13,直线 AB 与 CD 交于点 O,∠BOC=900,EF 经过点 O.
(1)指出图中所有的对顶角;
(2)图中那些角与∠AOE 互余?互补?
(3)若∠BOF=34°,试求出∠AOF,∠BOE,∠DOE 的度数.
OA B
C
D
E
2.1—142.1—13
O
A
B
2.1—159
2.如图 2.1—14,点 O 在直线 AB 上,OC 平分∠BOD,OE 平分∠AOD,请找出∠COD
的余角和补角,并说明理由。
3.学以致用: 如图 2.1—15:小颖想测量一堵拐角高墙在底面上所成的角∠AOB
度数,人不能进入围墙内,你能帮小颖想出简单的测量方法吗?请简述你的方法。
活动目的:巩固本节课的知识点,检验学生的掌握程度。
活动注意事项:要及时反馈,关注学生易错点,及时进行强调巩固。
第六环节 布置作业 能力延伸
基础题:1.书 P42 页习题 2.1 第 1,2,3,4,5 题
提高题:2.下图由两块相同的直角三角板拼成,其中∠FDE=∠AOB=900,点 O 在
FD 上,DE 在直线 AB 上, 请找出相等的角、互余的角、互补的角。
活动目的:作业应该体现出课堂学习的延续性,因此本节课我也精心设计了一道
探究性的题目,实现了同一图形经过不同变化可以产生不同问题,与课堂的问题
相呼应;作业分层,可以让不同程度的学生都能有不同的收获。
活动注意事项:首先应激励学生独立完成作业,其次注意提高效率,最后应鼓励
学生进行反思。
四、教学设计反思:
1. 开放课堂 激发潜能
数学来源于生活,反之又服务于生活。本课时我遵循“开放”的原则,引导
学生从身边熟悉的情境出发,使学生经历从现实生活中抽象出数学模型的过程,
体会本节课的重要性和在生活中的广泛应用;通过课堂开放,可以让学生在直观
有趣的问题情境中学到有价值的数学;学生搜集的信息是丰富多彩的,有利于教
师给学生一个充分展示自我的舞台,在活动中提高学生与他人合作交流的能力,
激发了学生的潜能,使学生成为课堂的主人,提高了学生分析问题解决问题的能
力!
C
A
BD E
F10
2.动手操作 探究新知
“几何直觉是增进数学理解力的很有效的途径,而且它可以使人增加勇气,
提高修养。”通过动手画图,可以加深学生对知识的理解,这也是促使学生认真
审题的重要方法。学生的画法千变万化,他们在相互交流中,很容易发现自己的
问题,起到相互补充,相互学习的效果,可以轻而易举地掌握新知识。
3.巧设问题串 打造高效课堂
我在教材提供的教学素材的基础上,重组教材,恰当地创设情境,以问题串
的方式激发学生的好奇心和求知欲,通过独立思考,不断提出问题分析问题,并
创造性地解决问题,通过动手操作、合作交流等方式,为学生构建了开放有效的
学习环境。变式训练、一题多解的设置,题目由易到难,由简到繁,争取能让每
一位学生都能领略到成功的喜悦!使学生思维分层递进,揭示概念的实质,不断
完善新的知识结构,同时体验了知识的形成过程和发现的快乐,继而转化为进一
步探索的内驱力;鼓励学生从多角度思考问题,充分激发学生的创新能力,使学
生的思维多向开花,极大的调动学生学习数学的热情!
4.注意事项。
课堂上让学生充分发表自己的见解。学生搜集的信息是丰富多彩的,学生的
思维也是百花齐放,教师应注意捕捉有效信息,从激励学生的角度出发,给予学
生一个充分展示自我的舞台,在活动中提高学生与他人合作交流的能力,激发学
生的学习兴趣。针对不同的问题,应大胆放手给学生,注意培养学生抽象几何图
形的能力,简单合情说理的能力,观察分析的能力,总结归纳的能力等。讨论时,
应该留给学生充分的独立思考的时间,不要让一些思维活跃的学生的回答代替了
其他学生的思考,掩盖了其他学生的疑问。教师应注重学生几何语言的培养,对
课堂生成的问题,应予以重视,教师可以激励学生课后继续探究,将课内学习延
伸到课外,开阔学生的视野。